
Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli 1

MANONMANIAM SUNDARANAR UNIVERSITY

 TIRUNELVELI-627 012

DIRECTORATE OF DISTANCE AND CONTINUING EDUCATION

II M.Sc. MATHEMATICS

SEMESTER III

SKILL ENHANCEMENT COURSE - II : PROGRAMMING IN C++

Sub. Code: SMAS31

 Prepared by

Dr. Leena Nelson S N

Associate Professor & Head, Department of Mathematics

 Women’s Christian College, Nagercoil – 1.

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli 2

PROGRAMMING IN C++ (SMAS31)

UNIT DETAILS

I Structures of C++ program – Tokens – Keywords – Identifiers and

constants – all data types – Constants – all variables – All

operators - Manipulator

II All Expressions - Conversion – Operator overloading – Operator

Precedence – Control Structures – Functions in C++ - Introduction

– Main Function – Function Prototyping – Return by reference

III Inline Functions – arguments – Function overloading – all

functions classes and objects

IV Nesting of member functions – Private member function – Arrays

within a class and Objects – Friendly function – Returning Objects

– Pointers to members – Local classes

V Constructors and Destructors – Operator overloading and Type

Conversions.

Text Book

E. Balagurusamy, Object Oriented Programming with C++, 4th Edition, Tata

McGraw-Hill Company, New Delhi, 2008.

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli 3

UNIT I

TOKENS, EXPRESSIONS AND CONTROL STRUCTURES

1.1 Introduction

 C++ is a superset of C and therefore most constructs of C are legal in C++ with their

meaning unchanged. However there are some exceptions and additions. In this chapter, we

shall discuss these exceptions and additions with respect to tokens and control structures.

 1.2 TOKENS

 The smallest individual units in a program are known as tokens. C++ has the

following tokens:

 Keywords

 Identifiers

 Constants

 Strings

 Operators

1.3 KEYWORDS

 Table 1.1 gives the complete sets of C++ keywords. Many of them are common to

both C and C++.

asm

auto

break

case

catch

char

class

const

continue

default

delete

do

double

else

enum

extern

float

for

friend

goto

if

inline

int

long

new

operator

private

protected

public

register

return

short

signed

sizeof

static

struct

switch

template

this

throw

try

typedef

union

unsigned

virtual

void

volatile

while

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli 4

Added by ANSI C++

bool

const_cast

dynamic_cast

explicit

export

false

mutable

namespace

reinterpret_cast

static_cast

true

typeid

typename

using

wchar_I

Table 1.1

1.4 IDENTIFIERS AND CONSTANTS

 Identifiers refer to the names of variables, functions, arrays, classes etc., created by

the programmer. They are the fundamental requirements of any language. Each language

has its own rules for naming these identifiers. The following rules are common to both C and

C++.

 Only alphabetic characters, digits and underscores are permitted.

 The name cannot start with a digit.

 Uppercase and lowercase letters are distinct.

 A declared keyword cannot be used as a variable name.

A major difference between C and C++ is the limit on the length of a name. While

ANSI C recognizes only the first 32 characters in a name. ANSI C++ places no limit on its

length and, therefore all the characters in a name are significant.

Constants refer to fixed values that do not change during the execution of a program.

Like C, C++ supports several kinds of literal constants. They include integers, characters,

floating point numbers and strings. Literal constants do not have memory locations.

Examples,

123 // decimal integer

12.34 // floating point integer

037 // octal integer

0X2 // hexadecimal integer

“C++” // string constant

‘A’ // character constant

L’ab’ // wide-character constant

The wchar_t type is a wide character literal introduced by ANSI C++ and is intended

for character sets that cannot fit a character into a single byte. Wide-character literals begin

with the name L.

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli 5

C++ also recognizes all the backslash character constants available in C.

1.5 BASIC DATA TYPES

 Both C and C++ compilers support all the built-in data types.

Type Bytes Range

char

unsigned char

signed char

int

unsigned int

signed int

short int

unsigned short int

signed short int

long int

signed long int

unsigned long int

float

double

long double

1

1

1

2

2

2

2

2

2

4

4

4

4

8

10

-128 to 127

0 to 255

-128 to 127

-32768 to 32767

0 to 65535

-32768 to 32767

-32768 to 32767

0 to 65535

-32768 to 32767

-2147483648 to 2147483647

-2147483648 to 2147483647

0 to 4294967295

3.4E-38 to 3.4E+38

1.7E-308 to 1.7E+308

3.4E-4932 to 1.1E+4932

Table 1.2 size and range of C++ b1asic data types

c++ Data Types

User-defined Type
Built-in type Derived Type

structure

union

class
enumeration

Integral type void floating type

array

function

pointer

refrerence

int char float double

deele

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli 6

The type void was introduced in ANSI C. Two normal uses of void are

(i) to specify the return type of a function when it is not returning any value &

(ii) to indicate an empty argument list to a function.

Example : void func1(void);

 Another interesting use of void is in the declaration of generic pointers.

Example : void *gp; // gp becomes generic pointer

 A generic pointer can be assigned a pointer value of any basic data type, but it may be

dereferenced.

For example, int *ip; // int pointer

 gp=ip; // assign int pointer to void pointer

are valid statements. But, the statement,

 *ip=*gp;

is illegal. It would not make sense to dereference a pointer to a void value.

1.6 USER-DEFINED DATA TYPES

Structures and Unions

 Arrays are used to group together similar type data elements, structures are used for

grouping together elements with dissimilar types.

 The general format of a structure definition is as follows:

struct name

{

 data_type member1;

 data_type member2;

};

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli 7

 Let us take the example of a book, which has several attributes such as title, number of

pages, price, etc.

struct book

{

chartitle[25];

charauthor[25];

int pages;

float price;

};

struct book book1, book2, book3;

Here book1, book2 and book3 are declared as variables of the user-defined type book.

 Unions are conceptually similar to structures as they allow us to group together

dissimilar type elements inside a single unit. But there are significant differences between

structures and unions as far as their implementation is concerned. The size of a structure type

is equal to the sum of the sizes of individual member types. However, the size of a union is

equal to the size of its largest number element. For instance, consider the following union

declaration:

union result

{

 int marks;

 char grade;

 float percent;

};

 In C++, structures and unions can be used just like they are used in C.

Table 1.3 Difference between structures and unions

Structure Union

 A structure is defined with ‘struct’

keyword.

 All members of a structure can b

manipulated simultaneously.

 The size of a structure object is equal to

the sum of the individual sizes of the member

objects.

 A union is defined with ‘union’

keyword.

 The members of a union can be

manipulated only one at a time.

 The size of a union object is equal to

the size of largest member object.

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli 8

 Structure members are allocated

distinct memory locations.

 Structures are not considered as

memory efficient in comparison to unions.

 Structure in C++ behave just like a

class. Almost everything that can be

achieved with a class can also be done with

structures.

 Union members share common

memory space for their exclusive usage.

 Unions are considered as memory

efficient particularly in situations when the

members are not required to be accessed

simultaneously.

 Unions retain their core functionality in

C++ with slight add-ons like declaration of

anonymous unions.

Classes

 C++ also permits us to define another user-defined data type known as class which can

be used, just like any other basic data type, to declare variables. The class variables are

known as objects, which are the central focus of object-oriented programming.

Enumerated Data Type

 An enumerated data type is another user-defined type which provides a way for

attaching names to numbers. The enum keyword (from C) automatically enumerate a list of

words by assigning them values 0, 1, 2 and so on. The syntax of an enum statement is

similar to that of the struct statement.

Examples : enum shape{circle, square, triangle};

 enum colour{red, blue, green, yellow};

 enum position{off, on};

 The enumerated data types differ slightly in C++ when compared with those in ANSI C.

In C++ the tag names shape, colour and position become new type names. By using these

tag names, we can declare new variables.

Examples : shape ellipse; // ellipse is of type shape

 colour background; // background is of type colour

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli 9

1.7 STORAGE CLASSES

Automatic : It is the default storage class of any type of variable. Its visibility is restricted to

the function in which it is declared. Further, its lifetime is also limited till the time its

container function is executing.

External: As the name suggests, an external variable is declared outside of a function but is

accessible inside the function block. Also called global variable, its visibility is spread all

across the program that means, it is accessible by all the functions present in the program.

Static: A static variable has the visibility of a local variable but the lifetime of an external

variable. That means, once declared inside a function block, it does not get destroyed after

the function is executed, but retains its value so that it can be used by future function calls.

 Register: Similar in behaviour to an automatic variable, a register variable differs in the

manner in which it is stored in the memory. Unlike, automatic variables that are stored in the

primary memory, the register variables are stored in CPU registers. The objective of storing

a variable in registers is to increase its access speed, which eventually makes the program run

faster.

Table 1.4 gives a summary of the four storage classes:

 Automatic External Static Register

Lifetime

Visibility

Initial Value

Storage

Purpose

Keyword

Function Block

Local

Garbage

Stack segment

Local variables

used by a single

function

auto

Entire program

Global

0

Data segment

Global variables

used throughout

the program.

extern

Entire program

Local

0

Data segment

Local variables

retaining their

values

throughout the

program

static

Function block

Local

Garbage

CPU Registers

Variables using

CPU registers

for storage

purpose

Register

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

10

1.8 DERIVED DATA TYPES

Arrays

 The application of arrays in C++ is similar to that in C. The only exception is the way

character arrays are initialized. When initializing a character array in ANSI C, the compiler

will allow us to declare the array size as the exact length of the string constant. For instance,

 char string[3] = ”xyz”;

is valid in ANSI C. It assumes that the programmer intends to leave out the null character \0

in the definition. But in C++, the size should be one larger than the number of characters in

the string.

 char string[4] = “xyz”; // O.K. for C++

Functions

 Functions have undergone major changes in C++. While some of these changes are

simple, others require a new way of thinking when organizing our programs. Many of these

modifications and improvements were driven by the requirements of the object-oriented

concept of C++.

Pointers

 Pointers are declared and initialized as in C Examples.

 int *ip; // int pointer

 ip = &x; // address of x assigned to ip

 ip = 10; // 10 assigned to x through indirection

C++ adds the concept of constant pointer and pointer to a constant.

 char * const ptr1 = “Good”; // constant pointer

We cannot modify the address that ptr1 is initialized to.

 int const *ptr2 = &m; // pointer to a constant

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

11

ptr2 is declared as pointer to a constant. It can point to any variable of correct type, but the

contents of what it points to cannot be changed.

 We can also declare both the pointer and the variable as constants in the following way:

 const char *const cp = “xyz”;

This statement declared cp as a constant pointer to the string which has been declared a

constant.

1.9 SYMBOLIC CONSTANTS

 There are two ways of creating symbolic constants in C++:

 Using the qualifier const, and

 Defining a set of integer constants using enum keyword.

 In both C and C++, any value declared as const cannot be modified by the program in

any way. However, there are some differences in implementation in C++, we can use const

in a constant expression, such as

 const int size = 10;

 char name[size];

This would be illegal in C. const allows us to create typed constants instead of having to

use #define to create constants that have no type information.

As with long and short, if we use the const modifier alone, if defaults to int. For example,

 const size = 10;

means

 const int size = 10;

 The named constants are just like variables except that their values cannot be changed.

 C++ requires a const to be initialized. ANSI C does not require an initialize, if none is

given, it initializes the const to 0.

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

12

1.10 TYPE COMPATIBILITY

 C++ is very strict with regard to type compatibility as compared to C. For instance,

C++ defines int, short int and long int as three different types. They must be cast when their

values are assigned to one another. Similarly, unsigned char, char and signed char are

considered as different types, although each of these has a size of one byte. In C++, the types

of values must be the same for complete compatibility, or else, a cast must be applied. These

restrictions in C++ are necessary in order to support function overloading where two

functions with the same name are distinguished using the type of function arguments.

 Another notable difference is the way char constants are stored. In C, they are stored

as ints, and therefore,

 sizeof (‘x’)

is equivalent to

 sizeof(int)

in C. In C++, however char is not promoted to the size of int and therefore,

 sizeof(‘x’)

equals

 sizeof(char)

1.11 DECLARATION OF VARIABLES

 C++ allows the declaration of a variable anywhere in the scope. This means that a

variable can be declared right at the place of its first use. This makes the program much

easier to write and reduces the errors that may be caused by having to scan back and forth. It

also makes the program easier to understand because the variables are declared in the context

of their use.

The example below illustrates this point.

 int main()

 {

 float x; // declaration

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

13

 float sum=0;

 for (int i=1; i<5; i+1) // declaration

 {

 cin>> x;

 sum=sum+x;

 }

 float average; // declaration

 average = sum / (i-1);

 count << average;

 return 0;

 }

1.12 DYNAMIC INITIALIZATION OF VARIABLES

 In C, a variable must be initialized using a constant expression, and the C compiler

would fix the initialization code at the time of compilation. C++, however, permits

initialization of the variables at run time. This is referred to as dynamic initialization. In

C++, a variable can be initialized at run time using expressions at the place of declaration.

For example, the following are valid initialization statements:

 int n = strlen(string);

 float area = 3.14159 * rad * rad;

Thus, both the declaration and the initialization of a variable can be done simultaneously at

the place where the variable is used for the first time. The following two statements in the

example of the previous section.

 float average; // declare where it is necessary

 average = sum/i;

can be combined into a single statement :

 float average = sum/i; // initialize dynamically at run time

Dynamic initialization is extensively used in object-oriented programming. We can create

exactly the type of object needed, using information that is known only at the run time.

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

14

1.13 REFERENCE VARIABLE

 C++ introduces a new kind of variable known as reference variable. A reference

variable provides an alias (alternative name) for a previously defined variable. For example,

if we make the variable sum a reference to the variable total, then sum and total can be used

interchangeably to represent that variable. A reference variable is created as follows:

 data-type & reference-name = variable-name

For example,

 float total = 100;

 float & sum = total;

total is a float type variable that has already been declared; sum is the alternative name

declared to represent the variable total. Both the variables refer to the same data object in the

memory. Now, the statement,

 count << total;

and

 count << sum;

both print the value 100. The statement

 total = total + 10;

will change the value of both total and sum to 110. Likewise, the assignment

 sum = 0;

will change the value of both the variable to zero.

 C++ assigns additional meaning to the symbol &. Here, & is not an address operator.

The notation float & means reference to float. Other examples are:

 int n[10];

 int & x = n[10]; // x is alias for n[10]

 char & a = ’\n’; // initialize reference to a literal

The variable x is an alternative to the array element n[10]. The variable a is initialized to the

newline constant. This creates a reference to the otherwise unknown location where the

newline constant \n is stored.

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

15

1.14 OPERATORS IN C++

 C++ has a rich set of operators. All C operators are valid in C++ also. In addition, C++

introduces some new operators. We have already seen two such operators, namely, the

insertion operator <<, and the extraction operator >> . Other new operators are:

 :: scope resolution operator

 ::* Pointer-to-member declarator

 →∗ Pointer-to-member operator

 .* Pointer-to-member operator

 delete Memory release operator

 endl Line feed operator

 new Memory allocation operator

 setw Field width operator

 In addition, C++ also allows us to provide new definitions to some of the built-in-

operators. That is, we can give several meanings to an operator, depending upon the types of

arguments used. This process is known as operator overloading.

1.15 SCOPE RESOLUTION OPERATOR

 Like C, C++ is also a block-structured language. Blocks and scopes can be used in

constructing programs. We know that the same variable name can be used to have different

meanings in different blocks. The scope of the variable extends from the point of its

declaration till the end of the block containing the declaration. A variable declared inside a

block is said to be local to that block. Consider the following segment of a program:

 {

 int x = 10;

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

16

 }

 {

 int x = 1;

 }

 The two declarations of x refer to two different memory locations containing different

values. Statements in the second block cannot refer to the variable x declared in the first

block, and vice versa. Blocks in C++ are often nested. For example, the following style is

common.

 {

 int x = 10;

 {

 int x = 1;

 Block 2 Block 1

 }

 }

 Block2 is contained in block 1. Note that a declaration in an inner block hides a

declaration of the same variable in an outer block and, therefore, each declaration of x causes

it to refer to a different data object. Within the inner block, the variable x will refer to the

data object declared therein.

 In C, the global version of a variable cannot be accessed from within the inner block.

C++ resolves this problem by introducing a new operator :: called the scope resolution

operator. This can be used to uncover a hidden variable. It takes the following form:

 :: variable-name

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

17

 This operator allows access to the global version of a variable. For example, ::count

means the global version count (and not the local variable count declared in that block). The

following program illustrates this feature.

 #include <iostream>

 using namespace std;

 int m = 10; // global m

 int main ()

 {

 int m = 20; // m redeclared, local to main

 {

 int k = m;

 int m = 30; // m declared again

 // local to inner block

 count << “we are in inner block \n”;

 count << “k= “ << k << “\n”;

 count << “m= “ << m << “\n”;

 count << “::m= “ << ::m << “\n”;

 }

 count << “\n We are in outer block \n”;

 count << “m=” << m << “\n”;

 count << “:: m =” << ::m << “\n”;

 return 0;

 }

The output of the program would be:

 We are in inner block

 k = 20

 m = 30

 ::m = 10

 We are in outer block

 m = 20

 ::m = 10

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

18

1.16 MEMBER DEREFERENCING OPERATORS

 C++ permits us to define a class containing various types of data and functions as

members. C++ also permits us to access the class members through pointers. In order to

achieve this, C++ provides a set of three pointer-to-member operators.

Table 1.5 shows these operators and their functions

Operator Function

::*

*

→∗

To declare a pointer to a member of a class

To access a member using object name and a pointer to that member

To access a member using a pointer to the object and a pointer to that member

1.17 MEMORY MANAGEMENT OPERATORS

 C uses malloc() and calloc() functions to allocate memory dynamically at run time.

Similarly, it uses the function free() to free dynamically allocated memory. We use dynamic

allocation techniques when it is not known in advance how much of memory space is needed.

Although C++ supports these functions, it also defines two unary operators new and delete

that perform the task of allocating and freeing the memory in a better and easier way.

 An object can be created by using new, and destroyed by using delete, as and when

required. A data object created inside a block with new, will remain in existence until it is

explicitly destroyed by using delete. Thus, the lifetime of an object is directly under our

control and is unrelated to the block structure of the program.

 The new operator can be used to create objects of any type. It takes the following

general form:

 pointer-variable = new data-type;

 Here, pointer-variable is a pointer of type data-type. The new operator allocates

sufficient memory to hold a data object of type data-type and returns the address of the

object. The data-type may be any valid data type. The pointer-variable holds the address of

the memory space allocated.

Examples:

 p = new int;

 q = new float;

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

19

where p is a pointer of type int and q is a pointer of type float. Here, p and q must have

already been declared as pointers of appropriate types. Alternatively, we can combine the

declaration of pointers and their assignments as follows:

 int *p = new int;

 float *q = new float;

Subsequently, the statements

 *p = 25;

 *q = 7.5;

assign 25 to the newly created int object and 7.5 to the float object.

 We can also initialize the memory using the new operator. This is done as follows:

 pointer-variable = new data-type (value);

 Here, value specifies the initial value. Examples:

 int *p = new int (25);

 float *q = new float (7.5);

 As mentioned earlier, new can be used to create a memory space for any data type

including user-defined types such as arrays, structures and classes. The general form for a

one-dimensional array is:

 pointer-variable = new data-type (size);

 Here, size specifies the number of elements in the array. For example, the statement

 int *p = new int [10];

creates a memory space for an array of 10 integers. p[0] will refer to the first element, p[1] to

the second element, and so on.

 When a data object is no longer needed, it is destroyed to release the memory space for

reuse. The general form of its use is :

 delete pointer-variable;

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

20

 The pointer-variable is the pointer that points to a data object created with new.

Examples:

 delete p;

 delete q;

 If we want to free a dynamically allocated array, we must use the following form of

delete:

 delete [size] pointer-variable;

 The size specifies the number of elements in the array to be freed. The problem with

this form is that the programmer should remember the size of the array. Recent versions of

C++ do not require the size to be specified. For example,

 delete []p;

will delete the entire array pointed to by p.

Program 1.1 Use of new and delete Operators

 #include <iostream>

 #include <conio.h>

 using namespace std;

 void main ()

 {

 int *arr;

 int size;

 count<<”Enter the size of the integer array: “;

 cin>>size;

 cout<<”Creating an array of size “<<size<<”..”;

 arr = new int[size];

 cout<<”\nDynamic allocation of memory for array arr is successful.”;

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

21

 delete arr;

 getch();

 }

The output of Program 1.1 would be:

 Enter the size of the integer array: 5

 Creating an array of size 5 ..

 Dynamic allocation of memory for array arr is successful.

1.18 MANIPULATORS

 Manipulators are operators that are used to format the data display. The most

commonly used manipulators are endl and setw.

 The endl manipulator, when used in an output, one for each variable. If we assume the

values of the variable as 2597, 14 and 175 respectively, the output will appear as follows:

m= 2 5 9 7

n= 1 4

p= 1 7 5

It is important to note that this form is not the ideal output. It should rather appear as under:

 m = 2597

 n = 14

 p = 175

Here, the numbers are right justified. This form of output is possible only if we can specify a

common field width for all the numbers and force them to be printed right-justified. The

setw manipulator does this job. It is used as follows:

 count << setw(5) << sum << endl;

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

22

The manipulator setw(5) specifies a field width 5 for printing the value of the variable sum.

The value is right justified within the field as shown below:

 3 4 5

 Program 1.4 Use of Manipulators

 #include <iostream>

 #include <iomanip> // for setw

 using namespace std;

 int main()

 {

 int Basic = 950, Allowance = 95, Total = 1045;

 count << setw(10) << “Basic” << setw(10) << Basic << endl

 << setw(10) << “Allowance” << setw(10) << Allowance << endl

 << setw(10) << “Total” << setw(10) << Total << endl;

 return 0;

 }

The output of the above program would be

 Basic 950

 Allowance 95

 Total 1045

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

23

UNIT II

OPERATORS & FUNCTIONS IN C++

2.1 TYPE CAST OPERATOR

 C++ permits explicit type conversion of variables or expressions using the type cast

operator.

 Traditional C casts are augmented in C++ by a function-call notation as a syntactic

alternatives. The following two versions are equivalent:

 (type-name) expression // C notation

 type-name (expression) // C++ notation

Example:

 average = sum(float)i; // C notation

 average=sum/float(i); // C++ notation

 A type-name behaves as if it is a function for converting values to a designated type.

The function-call notation usually leads to simplest expressions. However, it can be used

only if the type is an identifier.

For example,

 p = int *(q);

is illegal. In such cases, we must use C type notation.

 p = (int *) q;

 Alternatively, we can use typedef to create an identifier of the required type and use it

in the functional notation.

 typedef int * int_pt;

 p = int_pt(q);

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

24

Program 2.1 Explicit Type Casting

 #include <iostream>

 #include <conio.h>

 using namespace std;

 int main()

 {

 int intvar = 25;

 float floatvar = 35.87;

 count<<”intvar = “<<intvar;

 count<<”\nfloatvar = “<<floatvar;

 count<<”\nfloat(intvar) = “<<float(intvar);

 count<< “\nint(floatvar) = “<<int(floatvar);

 getch();

 }

The output of Program 2.1 would be

 intvar = 25

 floatvar = 35.87

 float(intvar) = 25

 int(floatvar) = 35

2.2 EXPRESSIONS AND THEIR TYPES

 An expression is a combination of operators, constants and variables arranged as per the

rules of the language. It may also include function calls which return values. An expression

may consist of one or more operands, and zero or more operators to produce a value.

Expressions may be of the following seven types:

 Constant expressions

 Integral expressions

 Float expressions

 Pointer expressions

 Relational expressions

 Logical expressions

 Bitwise expressions

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

25

 An expression may also use combinations of the above expressions. Such expressions

are known as compound expressions.

Constant Expressions

 Constant Expressions consist of only constant values. Examples:

15

 20 + 5 / 2.0

‘x’

Integral Expressions

Integral Expressions are those which produce integer results after implementing all

the automatic and explicit type conversions. Examples :

 m

 m * n - 5

 m * ‘x’

 5 + int (2.0)

where m and n are integer variables.

Float Expressions :

Float expressions are those which, after all conversions, produce floating-point

results. Examples:

 x + y

 x * y / 10

 5 + float (10)

 10.75

where x and y are floating-point variables.

Pointer Expressions :

Pointer Expressions produce address values.

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

26

Examples:

 &m

 ptr

 ptr + 1

 “xyz”

where m is a variable and ptr is a pointer.

Relational Expressions :

Relational Expressions yields results of type bool which takes a value true or false.

Examples:

 x <= y

 a + b == c + d

 m + n > 100

 When arithmetic expressions are used on either side of a relational operator, they will be

evaluated first and then the results compared. Relational expressions are also known as

Boolean expressions.

Logical Expressions :

Logical Expressions combine two or more relational expressions and produces bool

type results. Examples:

a>b && x == 10

 x == 10 | | y == 5

Bitwise Expressions :

Bitwise expressions are used to manipulate data at bit level. They are basically used

for testing or shifting bits. Examples:

 x << 3 / / Shift three bit position to left

 y >> 1 / / Shift one bit position to right

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

27

Shift operators are often used for multiplication and division by powers of two.

 ANSI C++ has introduced what are termed as operator keywords that can be used as

alternative representation for operator symbols.

2.3 SPECIAL ASSIGNMENT EXPRESSIONS

Chained Assignment :

 x = (y = 10) ;

 or

 x = y = 10;

First 10 is assigned to y and then to x.

 A chained statement cannot be used to initialize variables at the time of declaration. For

instance, the statement

 float a = b = 12.34; // wrong

is illegal. This may be written as

 float a = 12.34, b = 12.34; // correct

Embedded Assignment :

 x = (y = 50) + 10 ;

(y = 50) is an assignment expression known as embedded assignment. Here, the value 50 is

assigned to y and then the result 50+10 = 60 is assigned to x. This statement is identical to

 y = 50;

 x = y + 10

Compound Assignment :

Like C, C++ supports a compound assignment operator which is a combination of the

assignment operator with a binary arithmetic operator. For example, the simple assignment

statement

 x = x + 10;

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

28

may be written as

 x += 10

 The operator += is known as compound assignment operator or short-hand assignment

operator. The general form of the compound assignment operator is :

 variable op= variable2;

where op is a binary arithmentic operator. This means that

 variable1 = variable1 op variable2;

2.4 IMPLICIT CONVERSIONS

We can mix data types in expressions. For example,

 m = 5+2.75;

is a valid statement. Wherever data types are mixed in an expression, C++ performs the

conversions automatically. This process is known as implicit or automatic conversions.

When the compiler encounters an expression, it divides the expressions into sub-

expressions consisting of the operator and one or two operands. For a binary operator, if the

operands type differ, the compiler converts one of them to match with the other, using the

rule that the “smaller” type is converted to the “wider” type. For example, if one of the

operand is an int and the other is a float, the int is converted into a float because a float is

wider than an int. The “water-fall” model shown in figure illustrates this rule.

short char

int

unsigned

long int

unsigned long int

float

7double

long double

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

29

Whenever a char or short int appears in an expression, it is converted to an int. This is

called integral widening conversion. The implicit conversion is applied only after completing

all integral widening conversions.

Table : Results of Mixed-mode Operations

 RHO

LHO

char

short int long float double long

double

char int int int long float double long

double

short int int int long float double long

double

int int int int long float double long

double

long long long long long float double long

double

float float float float float float double long

double

double double double double double double double long

double

long double long

double

long

double

long

double

long

double

long

double

long

double

long

double

RHO - Right hand operand

LHO - Left hand operand

2.5 OPERATOR OVERLOADING

As stated earlier, overloading means assigning different meanings to an operation,

depending on the context. C++ permits overloading of operators, thus allowing us to assign

multiple meanings to operators. Actually, we have used the concept of overloading in C also.

For example, the operator* when applied to a pointer variable, gives the value pointed to by

the pointer. But it is also commonly used for multiplying two numbers . The number and type

of operands decide the nature of operation to follow.

 The input/output operators << and >> are good examples of operator overloading.

Although the built-in definition of the << operator is for shifting of bits, it is also used for

displaying the values of various data types. This has been made possible by the header life

iostream where a number of overloading definitions for << are included. Thus, the statement

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

30

 cout << 75.86;

invokes the definition for displaying a double type value, and

 cout << “well done”;

invokes the definition for displaying a char value. However, none of these definitions in

iostream affect the built-in meaning of the operator.

 Similarly, we can define additional meanngs to other C++ operators. For example, we can

define + operator to add two structures or objects. Almost all C++ operators can be

overloaded with a few exceptions such as the member-access operators (.and.*), conditional

operator (?:), scope resolution operator (::) and the size operator (sizeof). Definitions for

operator overloading are discussed in detail in

2.6 OPERATOR PERCEDENCE

Although C++ enables us to add multiple meanings to the operators, yet their

association and precendence remain the same. For example, the multiplication operator will

continue having higher precendence than the add operator. Table gives the precendence and

associativity of all the C++ operators. The groups are listed in the order of decreasing

precendence. The labels prefix and postfix distinguish the uses of ++ and --. Also, the

symbols +, -,*, and & are used as both unary and binary operators.

 A complete list of ANSI C++ operators and their meanings, precendence, associativity

and use are given in Appendix E.

Operator Associativity

::

-> . (_)[] postfix ++ postfix --

prefix ++prefix -- ! unary + unary - unary

* unary & (type) sizeof new delete

-> **

* / %

+-

<<>>

left to right

left to right

right to left

left to right

left to right

left to right

left to right

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

31

<< = >> =

== !=

&

^

|

&&

||

?:

= * = / = % = + = =

<< = >> = & = ^= |=

, (comma)

left to right

left to right

left to right

left to right

left to right

left to right

left to right

left to right

right to left

left to right

Note : The unary operations assume higher precedence.

2.7 INTRODUCTION

We know that functions play an important role in C program development. Dividing a

program into functions is one of the major principles of top-down, structured programming.

Another advantage of using functions is that it is possible to reduce the size of a program by

calling and using them at different places in the program.

Recall that we have used a syntax to the following in developing C programs.

 void show () ; / * Function declaration * ?

 main ()

 {

 show () ; / * Function call * /

 }

 void show () / * Function definition * /

 {

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

32

 / * Function body * /

 }

 When the function is called, control is transferred to the first statement in the function

body. The other statements in the function body are then executed and control returns to the

main program when the closing brace is encountered. C++ is no exception. Functions

continue to be the building blocks of C++ programs. In fact, C++ has added many new

features to functions to make them more reliable and flexible. Like C++ operators, a C++

function can be overloaded to make it perform different tasks depending on the arguments

passed to it. Most of these modifications are aimed at meeting the requirements of object-

oriented facilities.

2.8 THE MAIN FUNCTION

 C does not apply any return type for the main() function which is the starting point

for the execution of a program. The definition of main() would look like this:

 main()

 {

 // main program statements

 }

This is perfectly valid because the main() in C does not return any value.

 In C++, the main() returns a value of type int to the operating system. C++,

therefore, explicitly defines main() as matching one of the following phototypes:

 int main();

 int main(int argc, char *argv[]);

 The functions that have a return value should use the return statement for termination.

The main() function in C++ is, therefore, defined as follows:

 int main ()

 {

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

33

 return 0;

 }

 Since the return type of functions is int by default, the keyword int in the main() header is

optional. Most C++ compilers will generate an error or warning if there is no return

statement. Turbo C++ issues the warning

 Function should return a value

and then proceeds to compile the program. It is good programming practice to actually return

a value from main().

 Many operating systems lost the return value (called exit value) to determine if there

is any problem. The explicit use of return(0) statement will indicate that the program was

successfully executed.

2.9 FUNCTION PROTOTYPING

 Function prototyping is one of the major improvements added to C++ functions. The

prototype describes the function interface to the compiler by giving details such as the

number and type of arguments and the type of return values. With function prototyping, a

template is always used when declaring and defining a function. When a function is called,

the compiler uses the template to ensure that proper arguments are passed, and the return

value is treated correctly. Any violation in matching the arguments or the return types will be

caught by the compiler at the time of compilation itself. These checks and controls did not

exist in the conventional C functions.

 Function prototype is a declaration statement in the calling program and is of the

following form:

 type function_name (argument-list);

 The argument-list contains the types and names of arguments that must be passed to

the function. Example:

 float volume{int x, float y, float z};

Note that each argument variable must be declared independently inside the parantheses.

That is, a combined declaration like

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

34

 float volume{int x, float y, z};

is illegal.

 In a function declaration, the names of the arguments are dummy variables and

therefore, they are optional. That is, the form

 float volume{int, float, float};

is acceptable at the place of declaration. At this stage, the compiler only checks for the type

of arguments when the function is called.

 In general, we can either include or exclude the variable names in the argument list of

prototypes. The variable names in the prototype just act as placeholders and, therefore, if

names are used, they don’t have to match the names used in the function call or function

definition.

 In the function definition, names are required because the arguments must be

referenced inside the function. Example:

 float volume(int a, float b, float c)

 {

 float v=a*b*c;

 }

The function volume() can be invoked in a program as follows:

 float cube1 = volume(b1, w1, h1); // Function call

 The variable b1, w1 and h1 are known as the actual parameters which specify the

dimensions of cube1. Their types should match with the types declared in the prototype.

2.10 CALL BY REFERENCE

 In traditional C, a function call passes arguments by value. The called function

creates a new set of variables and copies the values of arguments into them. The function

does not have access to the actual variables in the calling program and can only work on the

copies of values. This mechanism is fine if the function does not need to alter the values of

the original variables in the calling programe. But, there may arise situations where we would

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

35

like to change the values of variables in the calling program. For example, in bubble sort, we

compare two adjacent elements in the list and interchange their values if the first element is

greater than the second. If a function is used for bubble sort, then it should be able to alter the

values of variables in the calling function, which is not possible if the call-by-value method is

used.

 Provision of the reference variables in C++ permits us to pass parameters to the

functions by reference. When we pass arguements by reference, the ‘formal’ arguments in the

called function become allases to the ‘actual’ arguments in the calling function. This means

that when the function is working with its own arguments, it is actually working on the

original data. Consider the following function:

void swap (int &a, int &b) // a and b are reference variables

 {

 int t = a ;

 a = b ; // Dynamic initialization

 b = t ;

}

Now, if m and n are two integer variables, then the function call

 swap (m, n) ;

will exchange the values of m and n using their aliases (reference variables) a and b. In

traditional C, this is accomplished using pointers and indirection as follows:

void swapl (int *a, int *b) / * Function definition * /

 {

 int t ;

 t = *a ; / * assign the value at address a to t */

 *a = *b ; / * put the value at b into a */

 *b = t; / * put the value at t into b */

 }

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

36

This function can be called as follows:

 swapl (&x , &y) / * call by passing * /

 / * addresses of variables * /

 This approach is also acceptable in C++. Note that the call-by-reference method is neater

in its approach.

 2.11 RETURN BY REFERENCE

A function can also return a reference. Consider the following function:

 int & max (int &x, int &y 0

 {

 if (x > y)

 return x;

 else

 return y;

 }

Since the return type of max() is int &, the function returns reference to x or y (and not the

values). Then a function call such as max (a, b) will yield a reference to either a or b

depending on their values. This means that this function call can appear on the left-hand side

of an assignment statement. That is, the statement

 max (a, b) = -1 ;

is legal and assigns -1 to a if it is larger, otherwise -1 to b.

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

37

UNIT III

INLINE FUNCTIONS, CLASSES & OBJECTS

3.1 INLINE FUNCTIONS

 One of the objectives of using functions in a program is to save some memory space,

which becomes appreciable when a function is likely to be called many times. However,

every time a function is called, it takes a lot of extra time in executing a series of instructions

for tasks such as jumping to the function, saving registers, pushing arguments into the stack,

and returning to the calling function. When a function is small, a substantial percentage of

execution time may be spent in such overheads.

 One solution to this problem is to use macro definitions, popularly known as macros.

Preprocessor macros are popular in C. The major drawback with macros is that they are not

really functions and therefore, the usual error checking does not occur during compilation.

 C++ has a different solution to this problem. To eliminate the cost of calls to small

functions, C++ proposes a new feature called inline function. An inline function is a function

that is expanded in line when it is invoked. That is, the compiler replaces the function call

with the corresponding function code. The inline functions are defined as follows:

 inline function-header

 {

 function body

 }

Example :

 inline double cube(double a)

 {

 return(a*a*a);

 }

 The above inline function can be invoked the statements like

 c = cube(3.0);

 d = cube(2.5+1.5);

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

38

 On the execution of these statements, the values of c and d will be 27 and 64

respectively. If the arguments are expressions such as 2.5+1.5, the function passes the value

of the expression, 4 in this case. This makes the inline feature far superior to macros.

 We should exercise care before making a function inline. The speed benefits of inline

function diminish as the function grows in size. At some point the overhead of the function

call becomes small compared to the execution of the function, and the benefits of inline

functions may be lost. In such cases, the use of normal functions will be more meaningful.

Usually, the functions are made inline when they are small enough to be defined in one or

two lines. Example:

 inline double cube(double a) {return(a*a*a);}

 Remember that the inline keyword merely sends a request, not a command, to the

compiler. The compiler may ignore this request if the function definition is too long or too

complicated and compile the function as a normal function.

 Some of the situations where inline expansion may not work are:

1. For functions returning values, if a loop, a switch, or a goto exists

2. For functions not returning values, if a return statement exists

3. If functions contain static variables.

4. If inline functions are recursive.

Program 3.1 Inline Functions

 #include <iostream>

 using namespace std;

 inline float mul(float x, float y)

 {

 return (x*y);

 }

 inline double div(double p, double q)

 {

 return(p/q);

 }

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

39

 int main()

 {

 float a = 12.345;

 float b = 9.82;

 count << mul(a,b) << “\n”;

 count << div(a,b) << “\n”;

 return 0;

 }

The output of Program 3.1 would be

 121.228

 1.25713

3.2 DEFAULT ARGUMENTS

 C++ allows us to call a function without specifying all its arguments. In such cases,

the function assigns a default value to the parameter which does not have a matching

argument in the function call. Default values are specified when the function is declared.

The compiler looks at the prototype to see how many arguments a function uses and alerts the

program for possible default values. Here is an example of a prototype (i.e., function

declaration) with default values:

 float amount(float principal, int period, float rate=0.15);

 The default value is specified in a manner syntactically similar to a variable

initialization. The above prototype declares a default value of 0.15 to the argument rate. A

subsequent function call like

 value = amount(5000,7); // one argument missing

passes the value of 5000 to principal and 7 to period and then lets the function use default

value of 0.15 for rate. The call

 value = amount(5000, 5, 0.12); // no missing argument

passes an explicit value or 0.12 to rate.

 Default arguments are useful in situations where some arguments always have the

same value. For instance, bank interest may remain the same for all customers for a

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

40

particular period of deposit. It also provides a greater flexibility to the programmers. A

function can be written with more parameters than are required for its most common

application. Using default arguments, a programmer can use only those arguments that are

meaningful to a particular situation. Program 4.2 illustrates the use of default arguments.

Program 3.2 Default Arguments

 #include<iostream>

 #include<conio.h>

 using namespace std;

 int main()

 {

 float amount;

 float value(float p, int n, float r=0.15); // prototype

 void printline(char ch=’*’, int len=40); // prototype

 printline(); // use default values for arguments

 amount = value(5000.00,5); // default for 3rd argument

 cout<<”\n Final Value = “<<amount<<”\n\n”;

 printline(‘=’); // use default value for second argument

 getch();

 return 0;

 }

 float value (float p, int n, floar r)

 {

 int year = 1;

 float sum = p;

 while (year<=n)

 {

 sum = sum*(1+r);

 year = year+1;

 }

 return (sum);

 }

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

41

void printline(char ch, int len)

 {

 for (int i=1; i<=len;i++)

 printf(“&c”,ch);

 printf(“\n”);

 }

The output of Program 4.2 would be:

 Final Value = 10056.8

 Final Value = 37129.3

 =============================

Advantages of providing the default arguments are:

1. We can use default arguments to add new parameters to the existing functions.

2. Default arguments can be used to combine similar functions into one.

3.3 const ARGUMENTS

In C++, an argument to a function can be declared as const as shown below.

 int strlen(const char *p);

 int length(const string &s);

The qualifier const tells the compiler that the function should not modify the argument. The

compiler will generate an error when this condition is violated. This type of declaration is

significant only when we pass arguments by reference or pointers.

3.4 RECURSION

 Recursion is a situation where a function calls itself meaning, one of the statementsin

the function definition makes a call to the same function in which it is present. It may sound

like an infinite looping condition but just as a loop has a conditional check to take the

program control out of the loop, a recursive function also possesses a base case which returns

the program control from the current instance of the function to call back to the calling

function. For example, in a series of recursive calls to compute the factorial of a number, the

base case would be a situation where factorial of 0 is to be computed. Let us consider a few

examples (Program 4.3 and 4.4) to understand how the recursive approach works.

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

42

Program 3.4 Calculating factorial of a number

 # include <iostream>

 # include <conio.h>

 using namespace std;

 long fact (int n)

 {

 if (n == 0) // base case

 return 1;

 return (n * fact (n - 1) ; //recursive function call

 }

 int main ()

 {

 int num ;

 cout << “ Enter a positive integer : “;

 cin >> num ;

 cout << “Factorial of “ << num << “is” << fact (num) ;

 getch () ;

 return 0 ;

 }

The output of program 3.4 would be:

 Enter a positive integer : 10

 Factorial of 10 is 3628800

Program 3.5 Solving Tower of hanoi Problem

include <iostream>

include < conio.h>

using namespace std;

void TOH (int d, char tower1, char tower2, char tower3)

{

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

43

 if (d == 1) // base case

 {

 cout << “\nShift top disk from tower “ << tower1<< “ to tower” << tower

2 ;

return;

}

TOH (d - 1, tower3, tower2, tower1) ; // recursive function call

 }

 int main ()

 {

 int disk ;

 cout << “ Enter the number of disks: “;

 cin >> disk;

 if (disk < 1)

 cout << “\nThere are no disks to shift “;

 else

 cout << “\nThere are “ << disk << “ disk in tower 1 \n”;

 TOH (disk, ‘1’, ‘2’, ‘3’) ;

 cout << “\n \ n “ << disk << “disk in tower 1 are shifted to tower 2 “

getch ();

 retorn 0 ;

 }

The output of program 3.5 would be :

 Enter the number of disks : 3

 There are 3 disks in tower 1

 Shift top disk from tower 1 to tower 2

Shift top disk from tower 1 to tower 3

Shift top disk from tower 2 to tower 3

Shift top disk from tower 1 to tower 2

Shift top disk from tower 3 to tower 1

Shift top disk from tower 3 to tower 2

Shift top disk from tower 1 to tower 2

3 disks in tower 1 are shifted to tower 2

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

44

3.5 FUNCTION OVERLOADING

As stated earlier, overloading refers to the use of the same thing for different

purposes. C++ also permits overloading of functions. This means that we can use the same

function name to create functions that perform a variety of different tasks. This is known as

function polymorphism in OOP.

 Using the concept of function overloading ; we can design a family of functions with one

function name but with different argument lists. The function would perform different

operations depending on the argument list in the function call. The correct function to be

invoked is determined by checking the number and type of the arguments but not on the

function type. For example, on overloaded add () function handles different types of data as

shown below :

 // Declarations

 int add (int a, int b); // prototype 1

 int add (int a, int b, int c) ; // prototype 2

 doubke add (double x, double y) // prototype 3

 double add (int p, double q) // prototype 4

 double add (double p, int q) // prototype 5

 // Function calls

 cout << add (5, 10) ; // uses prototype 1

 cout << add (15, 10.0); // uses prototype 4

 cout << add (12.5, 7.5); // uses prototype 3

 cout << add (5, 10, 15); // uses prototype 2

 cout << add (0.75, 5); // uses prototype 5

 A function call first matches the prototype having the same number and types of

arguments and then calls the appropriate function for execution. A best match must be

unique. The function selection involves the following steps:

1. The compiler first tries to find an exact match in which the types of actual arguments are

the same, and use that function.

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

45

2. If an exact match is not found, the compiler uses the integral promotions to the actual

arguments, such as,

char to int

float to double

 to find a match.

3. When either of them fails, the compiler tries to use the built-in conversions (the implicit

assignment conversions) to the actual arguments and then uses the function whose match is

unique.

 If the conversion is possible to have multiple matches, then the compiler will generate

an error message. Suppose we use the following two functions:

 long square(long n)

 double square(double x)

A function call such as

 square(10)

will cause an error because int argument can be converted to either long or double, thereby

creating an ambiguous situation as to which version of square() should be used.

4. If all of the steps fail, then the compiler will try the user-defined conversions in

combination with integral promotions and built-in conversions to find a unique match.

User- defined conversions are often used in handling class objects.

Program 3.6 Function Overloading

 // Function volume() is overloading three times

 #include <iostream>

 using namespace std;

 // Declarations (prototypes)

 int volume(int);

 double volume(double, int);

 long volume(long, int, int);

 int main()

 {

 count<<”Calling the volume() function for computing the volume of a cube -

 “<<volume(10)<<”\n”;

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

46

 count<<”Calling the volume() function for computing the volume of a

 cylinder-”<<volume(2.5, 8)<<”\n”;

 count<<”Calling the volume() function for computing the volume of a

 rectangular box-”<<volume(100L, 75, 15);

 return 0;

 }

 // Function definitions

 int volume(int a) // cube

 {

 return(a*a*a);

 }

 double volume(double r, int h) // cylinder

 {

 return(3.14519*r*r*h);

 }

 long volume(long l, int b, int h) // rectangular box

 {

 return(l*b*h);

 }

The output of the above program would be

 Calling the volume() function for computing the volume of a cube - 1000

 Calling the volume() function for computing the volume of a cylinder - 157.26

 Calling the volume() function for computing the volume of a rectangular box -

112500

3.6 FRIEND AND VIRTUAL FUNCTIONS

C++ introduces two new types of functions, namely, friend function and virtual

function. They are basically introduced to handle some specific tasks related to class objects.

Therefore discussions on these functions have been reserved until after the class objects are

discussed.

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

47

CLASSES AND OBJECTS

3.7 Introduction

 The most important feature of C++ is the “class”. Its significance is highlighted by

the fact that Stroustrup initially gave the name “C with classes” to his new language. A class

is an extension of the idea of structure used in C. It is the way of creating and implementing

a user defined data type.

3.8 C STRUCTURES REVISITED

 We know that one of the unique features of the C language is structures. They

provide a method for packing together data of different types. A structure is a convenient

tool for handling a group of logically related data items. It is a user-defined data type with a

template that serves to define its data properties. Once the structure type has been defined,

we can create variables of that type using declarations that are similar to the built-in type

declarations. For example, consider the following declaration:

 struct student

 {

 char name[20];

 int roll_number;

 float total_marks;

 };

 The keyword struct declares student as a new data type that can hold three fields of

different data types. These fields are known as structure members or elements. The

identifier student, which is referred to as structure name or structure tag, can be used to create

variables of type student.

Example:

 struct student A; // C declaration

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

48

 A is a variable of type student and has three member variables as defined by the

template. Member variables can be accessed using the dot or period operator as follows:

 strcpy(A.name, “John”);

A.roll_number = 999;

 A.total_marks = 595.5;

 Final_total = A.total_marks+5;

Structures can have arrays, pointers or structures as members.

LIMITATIONS OF C STRUCTURE

 The standard C does not allow the struct data type to be treated like built-in types.

For example, consider the following structure:

 struct complex

 {

 float x;

 float y;

 };

 struct complex c1, c2, c3;

The complex numbers c1, c2 and c3 can easily be assigned values using the dot operator, but

we cannot add two complex numbers or subtract one from the other. For example,

 c3=c1 +c2;

is illegal in C.

 Another important limitation of C structures is that they do not permit data hiding.

Structure members can be directly accessed by the structure variables by any function

anywhere in their scope. In other words, the structure members are public members.

EXTENSION TO STRUCTURES

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

49

 C++ supports all the features of structures as defined in C. But C++ has expanded its

capabilities further to suit its OOP philosophy. It attempts to bring the user-defined types as

close as possible to the built-in data types, and also provides a facility to hide the data which

is one of the main principles of OOP. Inheritance, a mechanism by which one type can

inherit characteristics from other types, is also supported by C++.

 In C++, a structure can have both variables and functions as members. It can also

declare some of its members as ‘private’ so that they cannot be accessed directly by the

external functions.

 In C++, the structure names are stand-alone and can be used like any other type

names. In other words, the keyword struct can be omitted in the declaration of structure

variables. For example, we can declare the student variable A as

 student A; // C++ declaration

Remember, this is an error in C.

Note : The only difference between a structure and a class in C++ is that, by default, the

members of a class are private, while, by default, the members of a structure are public.

3.9 SPECIFYING A CLASS

 A class is a way to bind the data and its associated functions together. It allows the

data (and function) to be hidden, if necessary, from external use. When defining a class, we

are creating a new abstract data type that can be treated like any other built-in data type.

Generally, a class specification has two parts:

1. Class declaration

2. Class function definitions

 The class declaration describes the type and scope of its members. The class function

definitions describe how the class functions are implemented.

The general form of a class declaration is:

 class class_name

 {

 private:

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

50

 variable declarations;

 function declarations;

 public:

 variable declarations;

 function declarations;

 };

 The class declaration is similar to a struct declaration. The keyword class specifies,

that what follows is an abstract data of type class_name. The body of a class is enclosed

within braces and terminated by a semicolon. The class body contains the declaration of

variables and functions. These functions and variables are collectively called class members.

They are usually grouped under two sections, namely, private and public to denote which of

the members are private and which of them are public. The keywords private and public are

known as visibility labels. Note that these keywords are followed by a colon.

 The class members that have been declared as private can be accessed only from

within the class. On the other hand, the public members can be accessed from outside the

class also. The use of the keyword private is optional. By default, the members of the class

are private. If both the labels are missing, then, by default, all the members are private. Such

a class is completely hidden from the outside word and does not serve any purpose.

A Simple Class Example

 A typical class declaration would look like:

 class item

 {

 int number; // variables declaration

 float cost; // privvate by default

 public:

 void getdata(int a, float b); // functions declaration

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

51

 void putdata(void); // using prototype

 }; // ends with semicolon

 We usually give a class some meaningful name, such as item. This name now

becomes a new type identifier that can be used to declare instances of that class type. The

class item contains two data members and two function members. The data members are

private by default while both the functions are public by declaration. The function getdata()

can be used to assign values to the member variables number and cost, and putdata() for

displaying their values. These functions provide the only access to the data members from

outside the class. This means that the data cannot be accessed by any function that is not a

member of the class item. Note that the functions are declared but not defined.

CREATING OBJECTS

 Once a class has been declared, we can create variables of that type by using the class

name (like any other built-in type variables). For example,

 item x; // memory for x is created

creates a variable x of type item. In C++, the class variables are known as objects.

Therefore, x is called an object of type item. We may also declare more than one object in

one statement. Example:

 item x, y, z;

 The declaration of an object is similar to that of a variable of any basic type. The

necessary memory space is allocated to an object at this stage.

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

52

 Objects can also be created when a class is defined by placing their names

immediately after the closing brace, as we do in the case of structures. That is to say, the

definition

 class item

 {

 } x, y, z;

would create the objects x, y and z of type item.

ACCESSING CLASS MEMBERS

 The main() cannot contain statements that access number and cost directly. The

following is the format for calling a member function:

 object-name.function-name (actual-arguments);

For example, the function call statement

 x.getdata(100, 75.5);

is valid and assigns the value 100 to number and 75.5 to cost of the object x by implementing

the getdata() function. The assignments occur in the actual function.

 x.putdata();

would display the values of data members. The statement like

 getdata(100, 75.5);

has no meaning. Similarly, the statement

 x.number = 100;

is also illegal. Although x is an object of the type item to which number belongs, the number

can be accessed only through a member function and not by the object directly.

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

53

 It may be recalled that objects communicate by sending and receiving messages. This

is achieved through the member function. For example,

 x.putdata();

sends a message to the object x requesting it to display its contents.

 A variable declared as public can be accessed by the objects directly. Example:

 class xyz

 {

 int x;

 int y;

 public:

 int z;

 };

 xyz p;

 p.x = 0; // error, x is private

p.z = 10; //OK, z is public

Note : The use of data in this manner defeats the very idea of data hiding and therefore should

be avoided.

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

54

3.10 DEFINING MEMBER FUNCTION

 Member functions can be defined in two places:

 * Outside the class definition

 * Inside the class definition

It is obvious that, irrespective of the place of definition, the function should perform the same

task. Therefore, the code for the function body would be identical in both the cases.

Outside the Class Definition

An important difference between a member function and a normal function is that a

member function incorporates a membership ‘identity label’ in the header. This ‘lable’ tells

the compiler which class the function belongs to. The general form of a member function

definition is:

return-type class-name :: function-name (argument declaration)

{

 Function body

}

The membership lable class-name :: tells the compiler that the function function-name

belongs to the class class-name. That is, the scope of the function is restricted to the class-

name specified in the header line. The symbol :: is called the scope resolution operator.

For instance, consider the member functions getdata() and putdata() as discussed above.

They may be coded as follows:

 void item :: getdata(int a, float b)

 {

 number = a;

 cost = b;

 }

 void item :: putdata(void)

 {

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

55

 cout << “Number :” << number << “\n”;

 cout << “Cost :” << cost << “\n”;

 }

Since these functions do not return any value, their return-type is void. Function

arguments are declared using the ANSI prototype.

The member functions have some special characteristics that are often used in the program

development. These characteristics are :

 * Several different classes can use the same function name. The ‘membership lable’

will resolve their scope.

 * Member functions can access the private data of the class. A nonmember function

cannot do so.

 * A member function can call another member function directly, without using the dot

operator.

INSIDE THE CLASS DEFINITION

 Another method of defining a member function is to replace the function declaration

by the actual function definition inside the class. For example, we could define the item class

as follows:

 class item

 {

 int number;

 float cost;

 public:

 void getdata(int a, float b); // declaration

 // inline function

 void putdata(void) // definition inside the class

 {

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

56

 cout << number << “\n”;

 cout << cost << “\n”;

 }

 };

 When a function is defined inside a class, it is treated as an inline function.

Therefore, all the restrictions and limitations that apply to an inline function are also

applicable here. Normally, only small functions are defined inside the class definition.

3.11 A C++ PROGRAM WITH CLASS

Program 5.1 Class Implementation

#include <iostream>

 using namespace std;

 class item

 {

 int number; // private by default

 float cost; // private by default

 public:

 void getdata(int a, float b); // prototype declaration to be defined

 // Function defined inside class

 void putdata(void)

 {

 cout << “number :” << number << “\n”;

 cout << “cost :” << cost << “\n”;

 }

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

57

 };

 // Member Function Definition

 void item :: getdata(int a, float b) // use membership label

 {

 number = a; // private variables

 cost = b; // directly used

 }

 // Main Program

 int main()

 {

 item x; // create object x

 cout << “\nobject x” << “\n”;

 x.getdata(100, 299.95); // call member function

 x.putdata(); // call member function

 item y; // create another object

 cout << “\nobject y” << “\n”;

 y.getdata(200, 175.50);

 y.putdata();

 return 0;

 }

This program features the class item. This class contains two private variables and two

public functions. The member function getdata() which has been defined outside the class

supplies values to both the variables. The use of statements such as

 number = a;

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

58

in the function definition of getdata(). This shows that the member functions can have direct

access to private data items.

 The member function putdata() has been defined inside the class and therefore

behaves like an inline function. This function displays the values of the private variables

number and cost.

 The program creates two objects, x and y in two different statements. This can be

combined in one statement.

 int x, y; // creates a list of objects

The output of the above program is

 object x

 number : 100

 cost : 299.95

 object y

 number : 200

 cost : 175.5

For the sake of illustration we have shown one member function as inline and the other as an

‘external’ member function. Both can be defined as inline or external functions.

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

59

UNIT IV

MEMBER FUNCTIONS

4.1 NESTING OF MEMBER FUNCTIONS

We just discussed that a member function of a class can be called only by an object of

that class using a dot operator. However, there is an exception to this. A member function can

be called by using its name inside another member function of the same class. This is knowm

as nesting of member functions. Program 5.2 illustrates this feature.

Program 4.1 Nesting of Member functions

 # include <iostream>

 # include <conio.h>

 # include <string>

 using namespace std;

 class binary

 {

 string s;

 public:

 void read (void)

 {

 cout<< “Enter a binary number :”;

 cin>>s;

 }

 void chk_bin (void)

 {

 for (int i = 0; i < s. length () ; i++)

 {

 if (s.at (i) ! = ‘0’ && s.at (i) ! = ‘1’)

 {

 cout<<” \ nIncorrect binary number format... the program will

 quit “;

 getch () ;

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

60

 exit (0) ;

 }

 }

 }

 void ones (void)

 {

 chk_bin () ; // calling member function

 for (int i = 0; i < s.length () ; i++

 {

 if (s.at (i) ==’0’)

 s.at (i) = ‘1’;

 else

 s.at (i) = ‘0’ ;

 }

 }

 void displayones (void)

 {

 ones () ; // calling member function

 cout<<”\nThe 1’s compliment of the above binary number is : “<<s;

 }

 } ;

 int main ()

 {

 binary b;

 b.read ();

 b.displayones ();

 getch () ;

 return 0 ;

 }

The output of program 4.1 would be :

OUTPUT 1 :

 Enter a binary number : 110101

 The 1’s compliment of the above binary number is : 001010

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

61

OUTPUT 2:

 Enter a binary number : 1101210

 Incorrect binary number format ... the program will quit

NOTE : The above program uses the built-in-class, string for storing the binary number.

4.2 PRIVATE MEMBER FUNCTIONS

Although it is normal practice to place all the data items in a private section and all

the functions in public, some situations may require certain functions to be hidden (like

private data) from the outside calls. Tasks such as deleting an account in a customer file, or

providing increment to an employee are events of serious consequences and therefore the

functions handling such tasks should have restricted access. We can place these functions in

the private section.

 A private member function can only be called by another function that is a member of its

class. Even an object cannot invoke a private function using a dot operator. Consider a class

as defined below:

 class simple

 {

 int m;

 void read (void) ; // private member function

 public :

 void update (void) ;

 void write (void);

 } ;

 If s1 is an object of sample, then

 s1.read () ; // won’t work; objects cannot access

 // private members

is illegal. However, the function read () can be called by the function update() to update the

value of m.

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

62

 void sample : : update (void)

 {

 read (); // simple call; no object used

 }

4.3 ARRAYS WITHIN A CLASS

The arrays can be used as member variable in a class. The following class definition is

valid.

 const int size = 10; // provides value for array size

 class array

 {

 int a [size] ; // ‘a’ is int type array

 public:

 void setval (void) ;

 void display (void) ;

 } ;

The array variable a[] declared as a private member of the class array can be used in

the functions, like any other array variable. We can perform any operations on it. For

instance, in the above class definition, the member function setval() sets the values of

elements of the array a[], and display() function displays the values. Similarly, we may use

other member functions to perform any other operations on the array values.

Program 4.2 Processing shopping List

 #include <iostream>

 using namespace std;

 const m=50;

 class ITEMS

 {

 int itemCode[m];

 float itemPrice[m];

 int count;

 public:

 void CNT(void) (count = 0;) // initializes count to 0

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

63

 void getitem(void);

 void displaySum(void);

 void remove(void);

 void displayItem(void);

 };

 //==========================

 VOID ITEMS :: getitem(void) // assign values to data

 { // members of item

 cout << “Enter item code :”;

 cin >> itemCode(count);

 cout << “Enter item cost :”;

 cin >> itemPrice(count);

 count++;

 }

 void ITEMS :: displaySum(void) // display total value of all items

 {

 float sum = 0;

 for (int i=0; i<count; i++)

 sum = sum+ itemPrice[i];

 cout << “\nTotal value :” << sum << “\n”;

 }

 void ITEMS :: remove(void) // delete a specified item

 {

 int a;

 cout << “Enter item code : “;

 cin >> a;

 for (int i=0; i<count; i++)

 if (itemCode[i] == a)

 itemPrice[i] = 0;

 }

 void ITEMS :: displayItems(void) // displaying items

 {

 cout << “\nCode Price \n”;

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

64

 for (int i=0; i<count; i++)

 {

 cout <<”\n” << itemCode[i];

 cout << “ “ << itemPrice [i];

 }

 cout << “\n”;

 }

 // ============================

int main()

{

 ITEMS order;

 order.CNT();

 int x;

 do // do while loop

 {

 cout << “\n You can do the following;”

 << “Enter appropriate number \n”;

 cout << “\n1: Add an item “;

 cout << “\n2 : Display total value”;

 cout << “\n3 : Delete an item”;

 cout << “\n4 : Display all items”;

 cout << “\n5 : Quit”;

 cout << “\n\nWhat is your option?”;

 cin >> x;

 switch(x)

 {

 case 1 : order.getitem(); break;

 case 2: order.displaySum(); break;

 case 3 : order.remove(); break;

 case 4 : order.displayItems(); break;

 case 5 : break;

default : cout << “Error in input; try again\n”;

 }

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

65

 } while(x!=5); // do while ends

 return 0;

 }

The output of the above program would be

 You can do the following; Enter appropriate number

 1 : Add an item

 2 : Display total value

 3 : Delete an item

 4 : Display all items

 5 : Quit

 What is your option ? 1

 Enter item code : 111

 Enter item cost : 100

 You can do the following; Enter appropriate number

 1 : Add an item

 2 : Display total value

 3 : Delete an item

 4 : Display all items

 5 : Quit

 What is your option ? 1

 Enter item code : 222

 Enter item cost : 200

 You can do the following; Enter appropriate number

 1 : Add an item

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

66

 2 : Display total value

 3 : Delete an item

 4 : Display all items

 5 : Quit

 What is your option ? 2

 Total value : 600

 You can do the following; Enter appropriate number

 1 : Add an item

 2 : Display total value

 3 : Delete an item

 4 : Display all items

 5 : Quit

 What is your option ? 3

 Enter item code : 222

 You can do the following; Enter appropriate number

 1 : Add an item

 2 : Display total value

 3 : Delete an item

 4 : Display all items

 5 : Quit

 What is your option? 4

 Code Price

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

67

 111 100

 222 0

 333 300

 You can do the following; Enter appropriate number

 1 : Add an item

 2 : Display total value

 3 : Delete an item

 4 : Display all items

 5 : Quit

 What is your option? 5

NOTE : The program uses two arrays, namely itemCode[] to hold the code number of items

and ItemPrice [] to hold the prices. A third data member count is used to keep a record of

items in the list. The program uses a lot of four functions to implement the operations to be

performed on the list. The statement

 const int m = 50;

defines the size of the array members

The first function CNT () simply sets the variable count to zero. The second function

getitem () gets the item code and the item price interactively and assigns them to the array

members itemCode[count] and itemPrice[count]. Note that inside this function count is

incremented after the assignment operation is over. The function displaySum() first evaluates

the total value of the order and then prints the value. The fourth function remove() deletes a

given item from the list. It uses the item code to locate it in the list and sets the price to zero

indicating that the item is not ‘active’ in the list. Lastly, the function displayItems () displays

all the items in the list.

 The program implements all the tasks using a menu-based user interface.

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

68

4.4 MEMORY ALLOCATION FOR OBJECTS

We have stated that the memory space for objects is allocated when they are declared

and not when the class is specified. This statement is only partly true. Actually, the member

functions are created and placed in the memory space only once when they are defined as a

part of a class specification. Since all the objects belonging to that class use the same member

functions, no separate space is allocated for member functions when the objects are created.

Only space for member variables is allocated separately for each object. Separate memory

locations for the objects are essential, because the member variables will hold different data

values for different objects. This is shown in figure 4.1

 Common for all objects

 member function 1

 member function 2

memory created when functions defined

 Object 1 Object 2 Object 3

 member variable 1 member variable1 member variable 1

member variable 2 member variable 2 member variable 2

memory created when objects defined

 Figure 4.1 Object of memory

4.5 STATIC DATA MEMBERS

A data member of a class can be qualified as static. The properties of a static member

variable are similar to that of a C static variable. A static member variable has certain special

characteristics.

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

69

These are :

 * It is initialized to zero when the first object of its class is created. No other

initialization is permitted.

 * Only one copy of that member is created for the entire class and is shared by all the

objects of that class, no matter how many objects are created.

 * It is visible only within the class, but its lifetime is the entire program.

 Static variables are normally used to maintain values common to the entire class. For

example, a static data member can be used as a counter that records the occurrences of all the

objects. The program below illustrates the use of a static data member.

Program 4.3 Static Class Member

 #include <iostream>

 using namespace std;

 class item

 {

 static int count;

 int number;

 public:

 void getdata(int a)

 {

 number=a;

 count +1;

 }

 void getcount(void)

 {

 count << “count: “;

 count << count << “\n”;

 }

 };

 int item :: count

 int main()

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

70

 {

 item a, b, c; // count is initialized to zero

a.getcount(); // display count

 b.getcount();

 c.getcount();

a.getcount(100); // getting data into object a

b.getcount(200); // getting data into object b

c.getcount(300); // getting data into object c

count << “After reading data” << “\n”;

a.getcount(); // display count

 b.getcount();

 c.getcount();

 return 0;

 }

The output of the above program would be

 count : 0

 count : 0

 count : 0

 After reading data

 count : 3

 count : 3

 count : 3

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

71

The static variable count is initialized to zero when the objects are created. The count

is incremented whenever the data is read into an object. Since the data is read into object

three times, the variable count is incremented three times. Because there is only one copy of

count shared by all the three objects, all the three output statements cause the value 3 to be

displayed.

Object 1 Object 2 Object 3

number number number

 count

 (Common to all three objects)

Static variables are like non-inline member functions as they are declared in a class

declaration and defined in the source file. While defining a static variable, some initial value

can also be assigned to the variable. For instance, the following definition gives count the

initial value 10.

 int item : : count = 10 ;

4.6 STATIC MEMBER FUNCTIONS

Like static member variable we can also have static member functions. A member

function that is declared static has the following properties.

 * A static function can have access to only other static members (functions or

variables) declared in the same class.

 * A static member function can be called using the class name (instead of its objects)

as follows:

100 200 300

 3

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

72

 class-name : : function-name;

Program 4.4 illustrates the implementation of these characteristics. The static function

showcount() displays the number of objects created till that moment. A count of number of

objects created is maintained by the static variable count.

 The function showcode() displays the code number of each object.

Program 4.4 STATIC MEMBER FUNCTION

 # include <iostream>

 using namespace std;

 class test

 {

 int code;

 static int count; //static number variable

 public:

 void setcode (void)

 {

 code = ++count;

 }

 void showcode (void)

 {

 cout << “object number : “ << code << “\n;

 }

 static void showcount (void) // static member function

 {

 cout << “count:” << count << “\n;

 }

 };

 int test : : count ;

 int main ()

 {

 test t1, t2;

 t1.setcode () ;

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

73

 t2.setcode ();

 test : : showcount (); // accessing static function

 test t3;

 t3.setcode ();

 test : : showcount ();

 t1.showcode () ;

 t2.showcode () ;

 t3.showcode () ;

 return 0;

 }

The output of Program 4.4 would be :

 count : 2

 count : 3

 object number : 1

 object number : 2

 object number : 3

NOTE : Note that the statement

 code = ++count;

is executed wherever setcode() function is invoked and the current value of count is assigned

to code. Since each object has its own copy of code, the value contained in code represents a

unique number of its object.

Remember, the following function definition will not work:

 static void showcount ()

 {

 cout << code; // code is not static

 }

4.7 Arrays of objects

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

74

We know that an array can be of any data type including struct. Similarly, we can also

have arrays of variables that are of the type class. such variables are called arrays of objects.

Consider the following class definition:

 class employee

 {

 char name [30];

 float age;

 public:

 void getdata (void);

 void putdata (void);

 } ;

The identifier employee is a user-defined data type and can be used to create objects that

relate to different categories of the employees. Example:

 employee manager [3] ; // array of manager

 employee foreman [15] ; // array of foreman

 employee worker [75] ; // array of worker

The array manager contains three objects (managers), namely, manager [0], manager [1] and

manager [2], of type employee class. Similarly, the foreman array contains 15 objects

(foreman) and the worker array contains 75 objects(workers).

Since an array of objects behaves like any other array, we can use the usual array-

accessing methods to access individual elements, and then the dot member operator to access

the member functions. For example, the statement

 manager [i]. putdata () ;

will display the data of the ith element of the array manager. That is, this statement requests

the object manager [i] to invoke the member function putdata().

 An array of objects is stored inside the memory in the same way as a multi-

dimensional array. The array manager is represented in Fig. 5.5. Note that only the space for

data items of the objects is created. Member functions are stored separately and will be used

by all the objects.

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

75

 name

 manager [0]

 age

 name

 manager [1]

 age

 name

 manager [2]

 age

 Fig 4.2 Storage of data items of an object array

Program 4.5 illustrates the use of object arrays

Program 4.5 Array of objects

 #include <iostream>

 using namespace std;

 class employee

 {

 char name [30]; // string as class member

 float age;

 public;

 void getdata (void);

 void putdata (void);

 };

 void employee : : getdata (void)

 {

 cout << “Enter name: “;

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

76

 cin >> name;

 cout << “Enter age: “;

 cin >> age;

 }

 void employee : : putdata (void)

 {

 cout << “Name: “ << name << “\n”;

 cout << “Age:” << age << “\n”;

 }

 const int size = 3;

 int main ()

 {

 employee manager [size];

 for (int i = 0; i < size; i ++)

 {

 cout << “\nDetails of manager” << i + 1 << “\n”;

 manager [i].getdata ();

 }

 cout << “\n”;

 for (i = 0; i < size; i++)

 {

 cout << “\nManager” << i + 1 << “\n”;

 manager [i].putdata ();

 }

 return 0;

 }

 This being an interactive program, the input data and the program output are shown below:

 Interactive input

 Details of manager 1

 Enter name : xxx

 Enter age : 45

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

77

Details of manager 2

Enter name : yyy

 Enter age : 37

Details of manager 3

Enter name : zzz

 Enter age : 50

 Program output

 Manager 1

 Name : xxx

Age : 45

Manager 2

Name : yyy

Age : 37

Manager 3

Name : zzz

Age : 50

4.8 OBJECTS AS FUNCTION ARGUMENTS

Like any other data type, an object may be used as a function argument. This can be

done in two ways:

 * A copy of the entire object is passed to thee function.

 * Only the address of the object is transferred to the function.

 The first method is called pass-by-value. Since a copy of the object is passed to the

function, any changes made to the object inside the function do not affect the object used to

call the function. The second method is called pass-by-reference. When an address of the

object is passed, the called function works directly on the actual object used in the call. This

means that any changes made to the object inside the function will reflect in the actual

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

78

object. The pass-by reference method is more efficient since it requires to pass only the

address of the object and not the entire object.

 Program 4.6 illustrates the use of objects as function arguments. It performs the addition

of time in the hour and minutes format.

Program 4.6 Objects as Arguments

#include <iostream>

 using namespace std;

 class time

 {

 int hours;

 int minutes;

 public:

 void gettime (int h, int m)

 (hours = h; minutes = m;)

 void puttime (void)

 {

 cout << hours << “hours and “;

 cout << minutes << “minutes “ << “\n”;

 }

 void sum (time, time); // declaration with objects as arguments

 };

 void time : : sum (time t1, time t2) // t1, t2 are objects

 {

 minutes = t1.minutes + t2.minutes;

 hours = minutes / 60;

 minutes = minutes%60

 hours = hours + t1.hours + t2.hours;

 }

 int main ()

 {

 time T1, T2, T3;

 T1.gettime (2, 45); // get T1

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

79

 T2.gettime (3, 30); // get T2

 T3. sum (T1, T2); // T3 = T1 + T2

 cout << “T1 = “; T1.puttime (); // display T1

 cout << “T2 =”; T2.puttime (); // display T2

 cout << “T3=”; T3.puttime (); // display T3

 return 0;

 }

The output of Program 4.6 would be :

 T1 = 2 hours and 45 minutes

 T2 = 3 hours and 30 minutes

 T3 = 6 hours and 15 minutes

NOTE : Since the member function sum () is invoked by the object T3, with the objects T1

and T2 as arguments, it can directly access the hours and minute variables of T3. But, the

members of T1 and T2 can be accessed only by using the dot operator (like T1.hours and

T1.minutes). Therefore, inside the function sum(), the variables hours and minutes refer to

T3, T1.hours and T1.minutes refer to T1, and T2.hours and T2.minutes refer to T2.

 Figure 4.3 illustrates how the members are accessed inside the function sum().

Fig. 4.3 Accessing members of objects within a called function

An object can also be passed as an argument to a nonmember function. However, such

functions can have access to the public member functions only through the objects passed as

arguments to it. These functions cannot have access to the private data members.

4.9 FRIENDLY FUNCTIONS

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

80

We have been emphasizing throughout this chapter that the private numbers cannot be

accessed from outside the class. That is, a non-member function cannot have an access to the

private data of a class. However, there could be a situation where we would like two classes

to share a particular function. For example, consider a case where two classes, manager and

scientist, have been defined. We would like to use a function income_tax() to operate on the

objects of both these classes. In such situations, C++ allows the common function to be made

friendly with both the classes, thereby allowing the function to have access, to the private of

these classes. Such a function need not be a member of any of these classes.

To make an outside function “friendly” to a class, we have to simply declare this function

as a friend of the class as shown below:

class ABC

{

.

.

 public:

.

.

friend void xyz (void); // declaration

 };

The function declaration should be proceeded by the keyword friend. The function is

defined elsewhere in the program like a normal C++ function. The function definition does

not use either the keyword friend or the scope operator... The functions that are declared with

the keyword friend are known as friend functions. A function can be declared as a friend in

any number of classes. A friend function, although not a member function, has full access

rights to the private members of the class.

A friend function possesses certain special characteristics:

* It is not in the scope of the class to which it has been declared as friend.

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

81

* Since it is not in the scope of the class, it cannot be called using the object of that

class.

* It can be invoked like a normal function without the help of any object.

* Unlike member functions, it cannot access the member names directly and has to

use an object name and dot membership operator with each member name. (e.g. A.x)

* It can be declared either in the public or the private part of a class without affecting

its meaning.

* Usually, it has the object as arguments.

The friend functions are often used in operator overloading which will be discussed later.

Program 4.7 illustrates the use of a friend function.

Program 4.7 Friendly Function

 #include <iostream>

 using namespace std;

 class sample

 {

 int a;

 int b;

 public :

 void setvalue () {a = 25; b = 40;}

 friend float mean (sample s);

 };

 float mean (sample s)

 {

 return float (s.a +s.b)/2.0;

 }

 int main ()

 { sample X; // object X

 x.setvalue ();

 cout << “Mean value = “ << man (X) << “\n”;

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

82

 return 0;

 }

The output of Program 4.7 would be:

 Mean value = 32.5

NOTE : The friend function accesses the class variables a and b by using the dot operator

and the object passed to it. The function call mean(X) passes the object X by value to the

friend function.

 Member functions of one class can be friend functions of another class. In such cases,

they are defined using the scope resolution operator as shown below:

 class X

 {

 int fun1 (); // member function of X

 };

 class Y

 {

 friend int X : : fun1 (); // fun1() of X

 // is friend of Y

 };

The function fun1() is a member of class X and a friend of class Y.

 We can also declare all the member functions of one class as the friend functions of another

class. In such cases, the class is called a friend class. This can be specified as follows:

 class z

 {

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

83

 friend class X; // all member functions of x are

 // friends to z

 };

Program 4.8 demonstrates how friend functions work as a bridge between the classes.

Program 4.8 A Function Friendly to Two Classes

 #include <iostream>

 using namespace std;

 class ABC; // Forward declaration

 // ---//

 class XYZ

 {

 int x;

 public:

 void setvalue (int i) {x = i;}

friend void max (XYZ, ABC) ;

 };

 // ---//

 class ABC

 {

 int a;

 public:

 void setvalue (int i) {a = i;}

 friend void max (XYZ, ABC);

 };

 // ---//

 void max (XYZ m, ABC n) // Definition of friend

 {

 if (m.x >= n.a)

 cout << m.x;

 else

 cout << n.a;

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

84

 }

 // ---//

 int main()

 {

 ABC abc;

 abc.setvalue (10) ;

 XYZ xyz ;

 xyz.setvalue (20);

 max (xyz, abc);

 return 0;

 }

The output of Program 4.8 would be :

 20

NOTE: The function max() has arguments from both XYZ and ABC. When the function

max () is declared as a friend in XYZ for the first time, the compiler will not acknowledge

the presence of ABC unless its name is declared in the beginning as

 class ABC;

This is known as ‘forward’ declaration.

As pointed out earlier, a friend function can be called by reference. In this case, local

copies of the objects are not made. Instead a pointer to the address of the object is passed and

the called function directly works on the actual object used in the call.

This method can be used to alter the values of the private numbers of a class. Remember

altering the values of private numbers is against the basic principles of data hiding. It should

be used only when absolutely necessary.

Program 4.9 shows how to use a common function to exchange the private values of two

classes. The function is called by reference.

Program 4.9 Swapping Private Data of Classes

 #include <iostream>

 using namespace std;

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

85

 class class_2;

 class class_1

 {

 int value1;

 public:

 void indata (int a) {value1 = a ;}

 void display (void) {cout << value1 << “\n”;}

 friend void exchange (class_1 &, class_2 &);

 };

 class class_2

 {

 int value2;

 public:

 void indata (int a) {value2 = a;}

 void display(void) {cout << value2 << “\n”;}

 friend void exchange (class_1 &, class_2 &);

 };

 void exchange (class_1 & x, class_2 & y)

 {

 int temp = x.value1;

x.value1 = y.value2;

y.value2 = temp;

}

int main()

{

class_1 C1;

class_2 C2;

C1.indata (100);

C2.indata (200);

cout << “Values before exchange” << “\n”;

C1.display ();

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

86

C2.display ();

exchange {C1, C2); // swapping

cout << “Values after exchange “ << “\n”;

C1.display ();

C2.display ();

return 0;

}

The objects x and y are aliases of C1 and C2 respectively. The statements

 int temp = x.value1

 x.value1 = y.value2;

 y.value2 = temp;

directly modify the values of value1 and value2 declared in class_1 and class_2.

The output of Program 4.9 would be:

 Values before exchange

 100

 200

 Values after exchange

 200

 100

4.10 RETURNING OBJECTS

A function cannot only receive objects as arguments but also can return them. The

example in Program 4.10 illustrates how an object can be created (within a function) and

returned to another function.

Program 4.10 Returning Objects

 # include <iostream>

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

87

 # include <conio.h>

 using namespace std;

class matrix

{

int m [3] [3];

public:

void read (void)

{

cout << “Enter the elements of the 3x3 matrix:\n”;

int i, i;

for (i = 0; i < 3; i++)

for (j = 0; j < 3; j++)

{

cout << “m[“<<i<<”] [“<<j<<”] = “;

cin >> m [i] [j];

}

}

void display (void)

{

int i, j;

for (i = 0; i < 3; i++)

{

cout << “\n”;

for (j = 0; j < 3 ; j++)

{

cout << m [i] [j] << “\t”;

}

}

}

friend matrix trans (matrix);

};

matrix trans (matrix m1);

{

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

88

matrix m2; // creating an object

int i, j;

for (i = 0; i < 3; i++)

for (j = 0; j < 3; j++)

m2.m [i] [j] = m1.m[j] [i];

return (m2); // returning an object

}

int main ()

{

matrix mat1, mat2;

mat1. read ();

cout << “\nYou entered the following matrix:”;

mat1.display ();

mat2 = trans (mat1);

cout << “\nTransposed matrix:”;

mat2.display ();

getch ();

return 0;

}

Upon execution, Program 4.10 would generate the following output:

Enter the elements of the 3x3 matrix:

m [0] [0] = 1

m [0] [1] = 2

m [0] [2] = 3

m [1] [0] = 4

m [1] [1] = 5

m [1] [2] = 6

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

89

m [2] [0] = 7

m [2] [1] = 8

m [2] [2] = 9

You entered the following matrix:

1 2 3

4 5 6

7 8 9

Transposed matrix:

1 4 7

2 5 8

3 6 9

The program finds the transpose of a given 3x3 matrix and stores it in a new matrix

object. The display member function displays the matrix elements.

4.11 CONST MEMBER FUNCTIONS

If a member function does not alter any data in the class, then we may declare it as a

const member funcction as follows:

 void mul (int, int) const;

 double get_balance () const;

 The qualifier const is appended to the function prototypes (in both declaration and

definition). The compiler will generate an error message if such functions try to alter the data

values.

4.12 POINTERS TO MEMBERS

It is possible to take the address of a member of a class and assign it to a pointer. The

address of a member can be obtained by applying the operator & to a “fully qualified” class

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

90

member name. A class member pointer can be declared using the operator : :* with the class

name. For example, given the class

 class A

 {

 private:

 int m;

 public:

 void show ();

 };

We can define a pointer to the member m as follows:

 int A : :* ip = &A : : m;

 The ip pointer created thus acts like a class in that it must be invoked with a class object.

In the statement above, the phrase A: :* means “pointer-to-member of A class”. The phrase

&A: : m means the “address of the m member of A class”.

 Remember, the following statement is not valid.

 int *ip = &m; // won’t work

 This is because m is not simply an int type data. It has meaning only when it is associated

with the class to which it belongs. The scope operator must be applied to both the pointer and

the member.

 The pointer ip can now be used to access the member m inside member functions (or

friend functions). Let us assume that a is an object of A declared in the member function. we

can access m using the pointer ip as follows:

 cout << a.*ip; // display

 cout << a.m; // same as above

 Now, look at the following code:

 ap = *a; // ap is pointer to object a

 cout << ap -> *ip; // display m

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

91

 cout << ap -> m; // same as above

 The dereferencing operator ->* is used to access a member when we use pointers to both

the object and the member. The dereferencing operator.* is used when the object itself is used

with the member pointer. Note that *ip is used like a member name.

 We can also design pointers to member functions which, then, can be invoked using the

dereferencing operators in the main as shown below:

 (object-name .* pointer-to-member function) (10);

 (pointer-to-object ->* pointer-to-member function) (10)

 The precedence of () is higher than that of .* and ->*, so the parenthesis are necessary.

Program 4.11 illustrates the use of dereferencing operators to access the class members.

Program 4.11 Dereferencing Operators

 #include <iostream>

 using namespace std;

 class M

 {

 int x;

 int y;

 public:

 void set__xy (int a, int b)

 {

 x = a;

 y = b;

 }

 friend int sum (M m);

 };

 int sum (M m)

 {

 int M : :* px = &M : : x;

 int M : :* py = &M : : y;

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

92

 M *pm = &m;

 int S = m.*px + pm ->*py;

 return S;

 }

 int main ()

 {

 M n;

void (M : : *pf) (int, int) = &M : : set_xy;

(n.*pf) (10, 20);

cout << “SUM = “ << sum (n) << “\n”;

M *op = &n;

(op-> *pf) (30, 40);

cout << “Sum = “ << sum (n) << “\n”;

return 0;

 }

The output of Program 4.11 would be:

 sum = 30

 sum = 70

4.13 LOCAL CLASSES

Classes can be defined and used inside a function or a block. Such classes are called

local classes. Examples:

void test (int a) // function

{

.

.

class student // local class

{

.

. //class definition

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

93

.

 };

 student s1 (a); // create student object

 // use student object

 }

Local classes can use global variables (declared above the function) and static

variables declared inside the function but cannot use automatic local variables. The global

variables should be used with a scope operator (: :).

 There are some restrictions in constructing local classes. They cannot have static data

members and member functions must be defined inside the local classes. Enclosing function

cannot access the private members of a local class. However, we can achieve this by

declaring the enclosing function as a friend.

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

94

UNIT V

CONSTRUCTORS AND DESTRUCTORS,

OPERATOR OVERLOADING & TYPE CONVERSIONS

5.1 INTRODUCTION

We have seen, so far, a few examples of classes being implemented. In all the cases, we have

used member functions such as putdata() and setvalue() to provide initial values to the

private member variables. For example, the following statement

A.input ();

invokes the member function input(), which assigns the initial values to the data items of

object A. Similarly, the statement

 x.getdata (100,299.95);

passes the initial values as argumets to the function getdata(), where these values are

assigned to the private variables of object x. All these ‘function call’ statements are used with

the appropriate objects that have already been created. These functions cannot be used to

initialize the member variables at the time of creation of their objects.

Providing the initial values as described above does not conform with the philosophy

of C++ language. We stated earlier that, one of the aims of C++ is to create user-defined data

types such as class, that behave very similar to the built-in types. This means that we should

be able to initialize a class type variable (object) when it is declared, much the same way as

initialization of an ordinary variable. For example,

int m = 20;

float x = 5.75;

are valid initialization statements for basic data types.

 Similarly, when a variable of built-in type goes out of scope, the compiler

automatically destroys the variable. But it has not happened with objects we have so far

studied. It is therefore clear that some more features of classes need to be explored that would

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

95

enable us to initialize the objects when they are created and destroy them when their presence

is no longer necessary.

C++ provides a special member function called the constructor which enables an

object to initialize itself when it is created. This is known as automatic initialization of

objects. It also provides another member function called the distractor that destroys the

objects when they are no longer required.

5.2 CONSTRUCTORS

A constructor is a special member function , whose task is to initialize the objects of its

class. It is special because its name is the same as the class name. The constructor is invoked

whenever an object of its associated class is created. It is called constructor because it

constructs the values of data members of the class.

A constructor is declared and defined as follows:

 // classwith aconstructor

 class integer

 {

 int m, n;

 public:

 integer (void); // constructor declared

 };

 integer : : integer (void) // constructor defined

 {

 m = 0; n=0;

 }

When a class contains a constructor like the one defined above, it is guaranteed that an

object created by the class will be initialized automatically. For example, the declaration

integer int1; // object int1 created

not only creates the object int1 of type integer, but also initialize its data members m and n to

zero. There is no need to write any statement to invoke the constructor function (as we do

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

96

with the normal member functions). If a ‘normal’ member function is defined for zero

initialization, we would need to invoke this function for each of the objects separately. This

would be very inconvenient, if there are a large number of objects.

A constructor that accepts no parameters is called the default constructor. The default

constructor for class A is A::A(). If no such constructor is defined, then the compiler supplies

a default constructor. Therefore, a statement such as

A a;

invokes the default constructor of the compiler to create object a.

The constructor functions have some special characteristics. These are:

*They should be declared in the public section.

*They are invoked automatically when the objects are created.

*They do not have return types, not even void and therefore, and they cannot return

values.

*They cannot be inherited, though a derived class can call the base class constructor.

*Like other C++ functions, they can have default arguments.

* Constructors cannot be virtual.

*We cannot refer to this to their addresses.

*An object with the constructor (or destructor) cannot be used as a member of a

union.

*They make ‘implicit calls’ to the operators new and delete when member allocation

is required.

Remember, when a constructor is declared for a class, initialization of the class objects

become mandatory.

5.3 PARAMETERIZED CONSTRUCTORS

The constructor integer(), defined above, initializes the data members of all the objects to

zero. However, in practice, it may be necessary to initialize the various data elements of

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

97

different objects with different values when they are created. C++ permits us to achieve this

objective by passing arguments to the constructor function when the object are created. The

constructors that can take arguments are called parameterized constructors.

The constructor integer() may be modified to take arguments as shown below:

class integer

{

 int m, n;

 public:

 integer (int x, int); // parameterized constructor

};

integer : : integer (int x, int y)

{

 m = x; n=y;

}

 When a constructor has been parameterized, the object declaration statement such as,

integer int1;

may not work. We must pass the initial values as arguments to the constructor function when

an object is declared. This can be done in two ways:

* By calling the constructor explicitly

* By calling the constructor implicitly.

The following declaration illustrates the first method:

integer int1 = integer (0,100); // explicit call

This statement creates an integer object int1 and passes the values, 0 and 100 to it. The

second is implemented as follows:

integer int1(,100); // implicit call

 This method, sometimes called the shorthand method, is used very often as is shorter,

looks better and is easy to implement.

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

98

Remember, when the constructor is parameterized, we must provide appropriate

arguments for the constructor. Program 5.1 demonstrates the passing of arguments to the

constructor functions.

Program 5.1 Class with Constructors

 #include <iostream>

 using namespace std;

 class integer

 {

 int m, n;

 public :

 integer (int, int); // constructor declared

 void display (void)

{

cout << “ m = “ << m << “\n”;

cout << “ n = “ << n << “\n”;

 }

 };

 integer : : integer (int x, int y) // constructor defined

 {

 m = x; n = y;

 }

 int main ()

 {

 integer int1 (0,100); // constructor called implicitly

 integer int2 = integer (25, 75); // constructor called explicitly

 cout << “\nOBJECT1” << “\n”;

 int1.display ();

 cout << “\nOBJECT2” << “\n”;

 int2.display ();

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

99

 return 0;

 }

The output of Program 5.1 would be :

 OBJECT1

 m = 0

 n = 100

 OBJECT2

 m = 25

 n = 75

The constructor functions can also be defined as inline functions. Example:

 class integer

 {

 int m, n;

 public:

 integer (int x,int y) // Inline constructor

 {

 m = x; y = n;

 }

 };

The parameters of a constructor can be of any type except that of the class to which it

belongs. For example,

 class A

 {

 public :

 A (A);

 };

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

100

is illegal.

 However, a constructor can accept a reference to its own class as a parameter. Thus, the

statement

 Class A

 {

 public:

 A (A&);

 };

is valid. In such cases, the constructor is called the copy constructor.

5.4 MULTIPLE CONSTRUCTORS IN A CLASS

So far used two kinds of constructors. They are:

 integer (); // No arguments

 integer (int, int); // Two arguments

 In the first case, the constructor itself supplies the data values and no values are passes by

the calling program. In the second case, the function call passes the appropriate values from

main(). C++ permits as to use both these constructors in the same class. For example, we

would define a class as follows:

class integer

{

int m, n;

public:

integer () (m=0;n=0; } // constructor 1

integer (inta, int b)

{m = a; n=b;) // constructor 2

integer (integer & i)

{ m = i.m; n= i.n;) // constructor 3

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

101

};

 This declares three constructors for an integer object. The first constructor receives

no arguments, the second receives two integer arguments and the third receives one integer

object as an argument. For example, that declaration

integer I1;

 would automatically invoke the first constructor and both m and n of I1 t0 zero. The

statement

integer I2(20,40) ;

would call the second constructor which will initialize the data members m and n of 12 to 20

and 40 respectively. Finally, the statement

integer I3 (I2) ;

would invoke the third constructor which copies the values of I2into I3. In other words, it

said the value of every data element of 13 to the value of the corresponding data element of

12. As mentioned earlier, such a constructor is called the copy constructor. The process of

sharing the same name by two or more functions is referred to as function overloading.

Similarly when more than one constructor function is defined in a class, we say that the

constructor is overloaded.

 Program 5.2 shows the use of overloaded constructors.

Program 5.2 Overloaded Constructors

 # include <iostream>

 using namespace std;

 class complex

 {

 float x, y;

 public :

 complex () { } // constructor no arg

 complex (float a) {x = y = a;) // constructor-one arg

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

102

 complex (float real, float imag) // constructor-two args

 {x = real; y = imag;)

 friend complex sum (complex, complex);

 friend void show (complex) ;

 };

 complex sum (complex c1, complex c2) // friend

 {

 complex c3;

 c3.x = c1.x + c2.x;

 c3.y = c1.y + c2.y;

 return (c3);

 }

 void show (complex c) // friend

 {

 cout << c.x << “ + j “ << c.y << “\n”;

 }

 int main ()

 {

 complex A (2.7, 3.5); // define & initialize

 complex B (1.6); // define & initialize

 complex C; // define

 C = sum (A, B); // sum () is a friend

 cout << “A = “; show (A); // show () is also friend

 cout << “B = “; show (B);

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

103

 cout << “C = “; show (C);

 // Another way to give initial values (second method)

 complex P, Q, R; // define P, Q and R

 P = complex (2.5, 3.9) // initialize P

 Q = complex (1.6, 2.5) // initialize Q

 R = sum (P< Q);

 cout << “\n”;

 cout << “P = “; show (P);

 cout << “Q = “; show (Q);

 cout << “R = “; show (R);

 return 0;

 }

The output of Program 5.2 would be:

 A = 2.7 + j3.5

 B = 1.6 + j1.6

 C = 4.3 + j5.1

 P = 2.5 + j3.9

 Q = 1.6 + j2.5

 R = 4.1 + j6.4

Note : There are three constructors in the class complex. The first constructor, which takes no

arguments, is used to create objects which are not initialized; the second, which takes one

argument, is used to create objects and initialize them; and the third, which takes two

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

104

arguments, is also used to create objects and initialize them to specific values. Note that the

second method of initializing values looks better.

Let us look at the first constructor again.

 complex () { }

 It contains the empty body and does not do anything. We just stated that this is used to

create objects without any initial values. Remember, we have defined objects in the earlier

examples without using such a constructor. Why do we need this constructor now? As

pointed out earlier, C++ compiler has an implicit constructor which creates objects, even

though it was not defined in the class.

This works fine as long as we do not use any other constructors in the class. However,

once we define a constructor, we must also define the “do-nothing” implicit constructor. This

constructor will not do anything and is defined just to satisfy the compiler.

5.5 CONSTRUCTORS WITH DEFAULT ARGUMENTS

It is possible to define constructors with default arguments. For example, the

constructor complex () can be declared as follows:

 complex (float real, float imag = 0)

The default value of the argument imag is zero. Then, the statement

 complex C(5.0) ;

assigns the value 5.0 to the real variable and 0.0 to imag (by default). However the statement

 complex C(2.0, 3.0) ;

assigns 2.0 to real and 3.0 to imag. The actual parameter, when specified, overrides the

default value. As pointed out earlier, the missing arguments must be the trailing ones.

 It is important to distinguish between the default constructor A : : A() and the default

argument constructor A : : A(int = 0). The default argument constructor can be called with

either one argument or no arguments. When called with no arguments, it becomes a default

constructor. When both these forms are used in a class, it causes ambiguity for a statement

such as

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

105

 A a;

 The ambiguity is whether to ‘call’ A: :A() or A: :A(int = 0).

5.6 DYNAMIC INITIALIZATION OF OBJECTS

Class objects can be initialized dynamically too. That is to say, the initial value of an object

may be provided during run time. One advantage of dynamic initialization is that we can

provide various initialization formats, using overloaded constructors. This provides the

flexibility of using different format of data at run time depending upon the situation.

 Consider the long term deposit schemes working in the commercial banks. The banks

provide different interest rates for different schemes as well as for different periods of

investment. Program 5.3 illustrates how to use the class variables for holding account details

and how to construct these variables at run time using dynamic initialization.

Program 5.3 DYNAMIC INITIALIZATION OF OBJECTS

 // Long-term fixed deposit system

 # include <iostream>

 using namespace std;

 class Fixed_deposit

 {

 long int P_amount; // Principal amount

 int Years; // Period of investment

 float Rate; // Interest rate

 float R_value; // Return value of amount

 public :

 Fixed_deposit () { }

 Fixed_deposit (long int p, int y, float r = 0.12);

 fixed deposit (long int p, int y, int r);

 void display (void0;

 };

 Fixed_deposit : : Fixed_deposit (long int p, int y, float r)

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

106

 {

 P_amount = p;

 Years = y;

 Rate = r;

 R_value = P_amount ;

 for (int i = 1; i <= y; i++)

 R_value = R_value * (1.0 + r);

 }

 Fixed_deposit : : Fixed_deposit (long int p, int y, int r)

 {

 P_amount = p;

 Years = y;

 Rate = r;

 R_value = P_amount ;

 for (int i=1; i <=y; i++)

 R_value = R_value*(1.0+float (r) /100);

 }

 void Fixed_deposit : : display(void)

 {

 cout << “\n”

 << “Principal Amount = “ << P_amount << “\n”

 << “Return value = “ << R_value << “\n”;

 }

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

107

 int main()

 {

 Fixed_deposit FD1, FD2, FD3; // deposit created

 long int p; // principal amount

 int y; // investment period, years

 float r; // interest rate, decimal form

 int R; // interest rate, percent form

 cout << “Enter amount, period, interest rate (in percent) “ << “\n”;

 cin >> p >> y >> R;

 FD1 = Fixed_deposit (p,y,r);

 cout << “Enter amount, period, interest rate (decimal form)” << “\n”;

 cin >> p >> y >> r ;

 FD2 = Fixed_deposit (p,y,r);

 cout << “Enter amount and period” << “\n”;

 cin >> p >> y;

 FD3 = Fixed_deposit (p,y);

 cout << “\nDeposit 1”;

 FD1.display ();

 cout << “\nDeposit 2”;

 FD2.display ();

 cout << “\nDeposit 3”;

 FD3.display ();

 return 0;

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

108

 }

The output of Program 5.3 would be:

 Enter amount, period,interest rate (in percent)

 10000 3 18

 Enter amount, period, interest rate (in decimal form)

 10000 2 0.18

 Enter amount and period

 10000 3

 Deposit 1

 Principal Amount = 10000

 Return Value = 16430.3

 Deposit 2

 Principal Amount = 10000

 Return Value = 16430.3

 Deposit 3

 Principal Amount = 10000

 Return Value = 14049.3

 The program uses three overloaded constructors. The parameter values to these

constructors are provided at run time. The user can provide input in one of the following

forms:

1. Amount, period and interest in decimal form.

2. Amount, period and interest in percent form.

3. Amount and period.

NOTE : Since the constructors are overloaded with the appropriate parameters, that one that

matches the input values is invoked. For example, the second constructor is invoked for the

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

109

forms (1) and (3), and the third is invoked for the form (2). Note that, for form (3), the

constructor with default argument is used. Since input to the third parameter is missing, it

uses the default value for r.

5.7 COPY CONSTRUCTOR

We briefly mentioned about the copy constructor in Sec. 6.3. We used the copy constructor

 integer (integer &i);

in Sec 6.4 as one of the overloaded constructors.

 As stated earlier, a copy constructor is used to declare and initialize an object from another

object. For example, the statement

 integer I2 (I1);

would define the object I2 and at the same time initialize it to the values of I1. Another form

of this statement is

 integer I2 = I1;

 The process of initializing through a copy constructor is known as copy initialization.

Remember, the statement

 I2 = I1;

will not invoke the copy constructor. However, if I1 and I2 are objects, this statement is legal

and simply assigns the values of I1 and I2, member-by-member. This is the task of the

overloaded assignment operator (=). We shall see more about this later.

 A copy constructor takes a reference to an object of the same class as itself as an

argument. Let us consider a simple example of constructing and using a copy constructor as

shown in Program 5.4

Program 5.4

 #include <iostream>

 using namespace std;

 class code

 {

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

110

 int td;

 public:

 code () { } // constructor

 code (int a) { id = a;} // constructor again

 code (code & x) // copy constructor

 {

 id = x.id; // copy in the value

 }

 void display(void)

 {

 cout << id;

 }

 };

 int main ()

 {

 code A (100) ; // object A is created and initialized

 code B (A) ; // copy constructor called

 code C = A; // copy constructor called again

 code D; // D is created, not initialized

 D = A; // copy constructor not called

 code << “\n id of A: “; A.display ();

 code << “\n id of B: “; B.display ();

 code << “\n id of C: “; C.display ();

 code << “\n id of D: “; D.display ();

 return 0;

 }

The output of Program 5.4 would be:

 id of A : 100

 id of B : 100

 id of C : 100

 id of D : 100

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

111

Note : A reference variable has been used as an argument to the copy constructor. We cannot

pass the argument by value to a copy constructor.

 When no copy constructor is defined, the compiler supplies its own copy constructor.

5.8 DYNAMIC CONSTRUCTORS

The constructors can also be used to allocate memory while creating objects. This will

enable the system to allocate the right amount of memory for each object when the objects

are not of the same size, thus resulting in the saving of memory. Allocation of memory to

objects at the time of their construction is known as dynamic construction of objects. The

memory is allocated with the help of the new operator. Program 5.5 shows the use of new, in

constructors that are used to construct strings in objects.

Program 5.5 Constructors with new

 #include <iostream>

 #include <string>

 using namespace std;

 class string

 {

 char *name;

 int length;

 public:

 String () // constructor - 1

 {

 length = 0;

 name = new char [length + 1];

 }

 String (char *s) // constructor - 2

 {

 length = strlen (s);

 name = new char [length + 1]; // one additional

 // character for \0

 strcpy (name, s);

 }

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

112

 void display (void)

 {cout << name << “\n”;)

 void join (String &a, String &b)

 };

 void string : : join (String &a, String &b)

 {

 length = a.length +b.length;

 delete name;

 name = new char [length+1]; // dynamic allocation

 stropy (name, a.name);

 stropy (name, b.name);\

 };

 int main ()

 {

 char *first = “Joseph”;

 String name1 (first), name2 (“Louis”), name3 (“Lagrange”),

 s1, s2;

 s1. join (name1, name2);

 s2.join (s1, name 3);

 name1. display ();

 name2.display ();

 name3. display ();

 s1. display ();

 s2. display ();

 return 0;

 }

The output of the program 5.5 would be:

 Joseph

 Louis

 Lagrange

 Joseph Louis

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

113

Joseph Louis Lagrange

Note : The program uses two constructors. The first is an empty constructor that allows us to

declare an array of strings. The second constructor initializes the length of the string,

allocates necessary space for the string to be stored and creates the string itself. Note that

one additional character space is allocated to hold the end-of-string character ‘/0’.

 The member function join() concatenates two strings. It estimates the combined length of

the strings to be joined, allocates memory for the combined string and then creates the same

using the string functions strcpy() and strcat(). Note that in the function join (), length and

name are members of the object that calls the function, while a.length and a.name are

members of the argument object a. The main () function program concatenates three strings

into one string. The output is as shown below:

 Joseph Louis Lagrange

5.9 CONSTRUCTING TWO-DIMENSIONAL ARRAYS

We can construct matrix variables using the class type objects. The example in

program 5.6 illustrates how to construct a matrix of size m x n.

Program 5.6 Constructing Matrix Objects

 #include <iostream

 using namespace std;

 class matrix

 {

 int **p; // pointer to matrix

 int d1, d2 // dimensions

 public :

 matrix (int x, int y);

 void get_element (int i, int j, int value)

 { p [i] [j] = value;}

 int & put_element (int i, int j)

 (return p[i] [j];}

 };

 matrix : : matrix (int x, int y);

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

114

 {

 d1 = x;

 d2 = y;

 p = new int *[d1]; // creates an array pointer

 for (int i = 0; i < d1; i++)

 p[i] = new int [d2]; // creates space for each row

 }

 int main ()

 {

 int m, n;

 cout << “ Enter size of matrix: “;

 cin >> m >> n;

 matrix A(m,n); // matrix object A constructed

 cout << “Enter matrix elements row by row \n”;

 int i, j, value;

 for (i = 0; i < m; i++)

 for (j = 0; j < n; j++)

 {

 cin >> value;

A.get_element (i, j, value);

}

 cout << “/n”;

 cout << A.put_element (1, 2);

 return 0;

 };

The output of Program 5.6 would be:

 Enter size of matrix : 3 4

 Enter matrix elements row by row

 11 12 13 14

 15 16 17 18

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

115

 19 20 21 22

 17

17 is the value of the element (1, 2).

d2 columns

 0 1 2 3 4 5

 Pointer P [0]

 Pointer P [1] d1 rows

 Pointer P [2]

 Pointer P [3]

 x represents the element P[2] [3]

 The constructor first creates a vector pointer to an int of size d1. Then, it allocates,

iteratively an int type vector of size d2 pointed at by each element p[i]. Thus, space for the

elements of a d1 x d2 matrix is allocated from free store as shown above.

5.10 CONST OBJECTS

We may create and use constant objects using const keyword before object declaration. For

example, we may create X as a constant object of the class matrix as follows :

 const matrix X(m, n); // object X is constant

 Any attempt to modify the values of m and n will generate compile-time error.

Further, a constant object can call only const member functions. As we know, a const

member is a function prototype or function definition where the keyword const appears after

the function’s signature.

 Whenever const objects try to invoke nonconst member functions, the compiler

generates errors.

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

116

5.11 DESTRUCTORS

A destructor, as the name implies, is used to destroy the objects that have been created

by a constructor. Like a constructor, the destructor is a member function whose name is the

same as the class name by is preceded by a tilde. For example, the destructor for the class

integer can be defined as shown below:

 ~integer () { }

A destructor never takes any argument nor does it return any value. It will be invoked

implicitly by the compiler upon exit from the program (or block or function as the case may

be) to clean up storage that is no longer accessible. It is a good practice to declare destructors

in a program since it releases memory space for future us.

 Whenever new is used to allocate memory in the constructions, we should use delete

to free that memory. For example, the destructor for the matrix class discussed above may be

defined as follows:

 matrix : : ~matrix ()

 {

 for (int i = 0; i < d1; i++)

 delete p [i];

 delete p;

 }

 This is required because when the pointers to objects go out of scope, a destructor is

not called implicitly.

 The example below illustrates that the destructor has been invoked implicitly by the

compiler.

Program 5.7 Implementation of Destructions

 #include <iostream>

 using namespace std;

 int count = 0;

 class test

 {

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

117

 public:

 test ()

 {

 count++

 cout << “\n\nConstructor Msg: Object number “<< count <<

 “created. .”;

 }

 ~test ()

 {

 cout<<”\n\nDestructor Msg: Object number “<< count <<”

 destroyed. .”;

 count -- ;

 }

 };

 int main ()

 {

 cout<<”Inside the main block. .”;

 cout<<”\n\nCreating first object T1. .”;

 test T1;

 { // Block 1

 cout << “\n\nInside Block 1. .”;

 cout <<”\n\nCreating two more objects T2 and T3. .”;

 test T2, T3;

 cout << “\n\nLeaving Block 1. .”

 }

 cout << “\Back inside the main block. .”;

 return 0;

 }

The output of Program 5.7 would be:

 Inside the main block. .

Creating first object T1. .

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

118

Constructor Msg: Object number 1 created. .

Inside Block 1. .

Creating two more objects T2 and T3. .

Constructor Msg: Object number 2 created. .

Constructor Msg: Object number 3 created. .

Leaving Block 1. .

Destructor Msg: Object number 3 destroyed.

Destructor Msg: Object number 2 destroyed.

Back inside the main block. .

Destructor Msg: Object number 1 destroyed. .

NOTE : A class constructor is called everytime an object is created. Similarly, as the

program control leaves the current block the objects in the block start getting destroyed and

destructors are called for each one of them. Note that the objects are destroyed in the reverse

order of their creation. Finally when the main block is exited, destructors are called

corresponding to the remaining objects present inside main.

 Similar functionality as depicted in Program 6.7 can be attained by using static data

members with constructors and destructors. We can declare a static integer variable count

inside a class to keep a track of the numberof its object instantiations. Being static, the

variable will be initialized only once. i.e., when the first object instance is created. During all

subsequent object creations, the constructor will increment the count variable by one.

Similarly, the destrucor will decrement the count variable by one as and when an object gets

destroyed. To realize this scenario, the code in Program 5.7 will change slightly, as shown

below:

 #include <iostream>

 using namespace std;

 class test

 {

 provate:

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

119

 static int count = 0;

 public:

 .

 .

 }

 test ()

 {

 .

 count ++;

 }

 ~test ()

 {

 .

 count --;

 }

 The primary use of destructors is in freeing up the memory reserved by the object before it

gets destroyed. Program 5.8 demonstrates how a destructor releases the memory allocated to

an object.

Program 5.8 Memory Allocation to an Object Using Destructor

 #include <iostream>

 #include<conio.h>

 using namespace std;

 class test

 {

 int*a;

 public:

 test (int size)

 {

 a = new int [size];

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

120

 cout << “\n\nConstructor Msg : Integer array of size “<<size<<”

 created. .”;

 }

 ~test ()

 {

 delete a;

 cout <<”\n\nDestructor Msg: Freed up the memory allocated for integer

array”;

 }

 };

 int main()

 {

 int s;

 cout <<”Enter the size of the array. .”;

 cin>>s;

 cout << “\n\nCreating an object of test class. .”;

 test T(s);

 cout << “\n\nPress any key to end the program. .”;

 getch ();

 return 0;

 }

The output of Program 5.8 would be:

 Enter the size of the array..5

 Creating an object of test class. .

 Constructor Msg: Integer array of size 5 created. .

 Press any key to end the program. .

 Destructor Msg: Freed up the memory allocated for integer array

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

121

OPERATOR OVERLOADING AND TYPE CONVERSIONS

5.12 INTRODUCTION

Operator overloading is one of the many exciting features of C++ language. It is an

important technique that has enhanced the power of extensibility of C++. We have stated

more than once that C++ tries to make the user-defined data types behave in much the same

way as the built-in types. For instance, C++ permits us to add two variables of user-defined

types with the same syntax that is applied to the basic types. This means that C++ has the

ability to provide the operators with a special meaning for a data type. The mechanism of

giving such special meanings to an operator is known as operator overloading.

Operator overloading provides a flexible option for the creation of new definitions for

most of the C++ operators. We can overload (give additional meaning to) all the C++

operators except the following,

* Class member access operators(., .*).

* Scope resolution operator (: :).

* Size operator (size of).

* Conditional operator (?:).

The reason why we cannot overload these operators maybe attributed to the fact that these

operators take names (example class name) as their operand instead of values, as is the case

with other normal operators.

 Although the semantics of an operator can be extended, we cannot change its syntax,

the grammatical rules that govern its use such as the number of operands, precedence and

associativity. For example, the multiplication operator will enjoy higher precedence than the

addition operator. Remember, when an operator is overloaded, its original meaning is not

lost. For instance, the operator +, which has been overloaded to add two vectors, can still be

used to add two integers.

5.13 DEFINING OPERATOR OVERLOADING

To define an additional task to an operator, we must specify what it means in relation

to the class to which the operator is applied. This is done with the help of a special function

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

122

called operator function, which describes the task. The general form of an operator function

is,

 return type classname : : operator op (arglist)

 {

 Function body // task defined

 }

where return type is the type of value returned by the specified operation and op is the

operator being overloaded. operator op is the function name, where operator is a keyword.

 Operator functions must be either member functions (non-static) or friend functions.

A basic difference between them is that a friend function will have only one argument for

unary operators and two for binary operators, while a member function has no arguments for

unary operators and only one for binary operators. This is because the object used to invoke

the member function is passed implicitly and therefore is available for the member function.

This is not the case with friend functions. Arguments may be passed either by value or by

reference. Operator functions are declared in the class using prototype as follows:

vector operator +(vector); // vector addition

vector operator - (); // unary minus

friend vector operator + (vector, vector); // vector addition

friend vector operator - (vector); // unary minus

vector operator- (vector &a); // subtraction

int operator == (vector); // comparison

friend int operator == (vector, vector) // comparison

vector is a data type of class and may represent both magnitude and direction (as in physics

and engineering) or a series of points called elements (as in mathematics).

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

123

The process of overloading involves the following steps:

1. Create a class that defines the data type that is to be used in the overloading

operation

2. Declare the operator function operator op() in the public part of the class, it

may be either remember function or a friend function.

3. Define the operator function to implement the required operations.

Overloaded operator functions can be invoked by expressions such as

op x or x op

for unary operators and

x op y

for binary operators, op x (or x op) would be interpreted as

operator op (x)

for friend functions. Similarly, the expression x op y would be interpreted as either

x.operator op (y)

in case of member functions, or

operator op (x, y)

in case of friend functions. When both the forms are declared, standard argument

matching is applied to resolve any ambiguity.

5.14 OVERLOADING UNARY OPERATORS

Let us consider the unitary minus operator. A minus operator, when used as a unary,

takes just one operand. We know that this operator changes the sign of an operand when

applied to a basic data item. We will see here how to overload this operator so that it can be

applied to an object in much the same way as is applied to an int or float variable. The unary

minus when applied to an object should change the sign of each of its data items.

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

124

The following program shows how the unary minus operator is overloaded.

Program 5.9 Overloading unary minus

 #include <iostream>

 using namespace std;

 class space

 {

 int x;

 int y;

 int z;

 public:

 void getdata (int a, int b, int c);

 void display (void)

 void operator - (); // overload unary minus

 };

 void space : : getdata (int a, int b, int c)

 {

 x = a;

 y = b;

 z = c;

 }

 void space : : display (void)

 {

 cout << “x = “<<x<<” “;

 cout <<”y = “<<y<<” “;

 cout <<”z = “<<z<<”\n”;

 }

 void space : : Operator - ()

 {

 x = -x;

 y = -y;

 z = -z;

 }

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

125

 int main ()

 {

 space S;

S.getdata (10, -20, 30);

 cout << “S : “;

S.display ();

 -S; // activates operator -() function

 cout << “-S : “;

S.display ();

 return 0;

 }

The output of the Program 5.9 would be:

 S : x = 10 y = -20 z = 30

 -S : x = -10 y = 20 z = -30

NOTE: The function operator -() takes no argument. Then, what does this operator function

do?It changes the sign of data members of the object S. Since this function is a member

function of the same class, it can directly access the members of the object which activated it.

 Remember, a statement like

 S2 = -S1;

will not work because, the function operator-() does not return any value. It can work if the

function is modified to return an object.

 It is possible to overload a unary minus operator using a friend function as follows:

 friend void operator -(space &S); // declaration

 void operator -(space &S) // definition

 {

 s.x = -s.x;

 s.y = -s.y;

 s.z = -s.z;

 }

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

126

NOTE : Note that the argument is passed by reference. It will not work if we pass argument

by value because only a copy of the object that activated the call is passed to operator-().

Therefore, the changes made inside the operator function will not reflect in the called object.

5.15 OVERLOADING BINARY OPERATORS

We have just seen how to overload an unary operator. The same mechanism can be

used to overload a binary operator. In Chapter 6, we illustrated, how to add two complex

numbers using a friend function. A statement like

 C = sum (A, B); // functional notation

was used. The functional notation can be replaced by a natural looking expression.

 C = A + B; // arithmetic notation

by overloading the + operator using an operator +() function. The Program 5.10 illustrates

how this is accomplished.

Program 5.10 Overloading + Operator

 #include <iostream>

 using namespace std;

 class complx

 {

 float x; // real part

 float y; // imaginary part

 public:

 complex () { } // constructor 1

 complex (float real, float imag) // constructor 2

 { x = real; y = imag; }

 complex operator + (complex);

 void display (void);

 };

 complex complex : : operator + (complex c)

 {

 complex temp; // temporary

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

127

 temp.x = x + c.x; // these are

 temp.y = y + c.y; // float additions

 return (temp);

 }

void complex : : display (void)

 {

 cout << x << “ + j” << y << “\n”;

 }

 int main ()

 {

 complex C1, C2, C3; // invokes constructor 1

 C1 = complex (2.5, 3.5); // invokes constructor 2

 C2 = complex (1.6, 2.7);

 C3 = C1 + C2;

 cout << “C1 = “; C1.display();

 cout << “C2 = “; C2.display();

 cout << “C3 = “; C3.display();

 return 0;

 }

The output of Program 5.10 would be:

 C1 = 2.5 + j3.5

 C2 = 1.6 + j2.7

 C3 = 4.1 + j6.2

NOTE : Let us have a close look at the function operator+() and see how the operator

overloading is implemented.

 complex complex : : operator+ (complex c)

 {

 complex temp;

 temp.x = x + c.x;

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

128

 temp.y = y + c.y;

 return (temp);

 }

 We should note the following features of this function:

1. It receives only one complex type argument explicitly.

2. It returns a complex type value.

3. It is a member function of complex.

 The function is expected to add two complex values and return a complex value as the

result but receives only one value as argument. Where does the other value come from? Now

let us look at the statement that invokes this function:

 C3 = C1 + C2; // invokes operator+ () function

 We know that a member function can be invoked only by an object of the same class.

Here, the object, C1 takes the responsibility of invoking the function and C2 plays the role of

an argument that is passed to the function. The above invocation statement is equivalent to

 C3 = C1.operator + (C2) ; // usual function call syntax

 Therefore, in the operator+() function, the data members of C1 are accessed directly and

the data members of C2 (that is passes as an argument) are accessed using the dot operator.

Thus, both the objects are available for the function. For example, in the statement

 temp.x = x + c.x;

c.x refers to the object C2 and x refers to the object C1.temp.x is the real part of temp that has

been created specially to hold the results of addition of C1 and C2. The function returns the

complex temp to be assigned to C3. The following figure shows how this is implemented.

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

129

 As a rule, in overloading of binary operators, the left-hand operand is used to invoke the

operator function and the right-hand operand is passed as an argument.

 We can avoid the creation of the temp object by replacing the entire function body by the

following statement:

 return complex ((x + c.x), (y + c.y)); // invokes constructor 2

 What does it mean when we use a class name with an argument list? When the compiler

comes across a statement like this, it invokes an appropriate constructor, initializes an object

with no name and returns the contents for copying into an object. Such an object is called a

temporary object and goes out of space as soon as the contents are assigned to another object.

Using temporary objects can make the code shorter, more efficient and better to read.

5.16 OVERLOADING BINARY OPERATORS USING FRIENDS

As stated earlier, friend functions may be used in the place of member functions for

overloading a binary operator, the only difference being that a friend function requires two

arguments to be explicitly passed to it, while a member function requires only one.

The complex number program discussed in the previous section can be modified using a

friend operator function as follows:

1. Replace the member function declaration by the friend function declaration.

 friend complex operator+ (complex, complex);

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

130

2. Redefine the operator function as follows:

complex operator + (complex a, complex b)

{

return complex ((a.x + b.x), (a.y + b.y));

}

 In this case, the statement

C3 = C1 + C2;

is equivalent to

C3 = operator + (C1, C2);

In most cases, we will get the same results by the use of either a friend function or a

member function. Why then an alternative is made available? There are certain situations

where we would like to use a friend function rather than a member function. For instance,

consider a situation where we need to use two different types of operands for a binary

operator, say, one an object and another built-in type data as shown below,

A = B + 2; (or A = B * 2 ;)

where A and B are objects of the same class. This will work for a member function, but the

statement

A = 2 + B; (or A = 2 * B)

will not work. This is because the left-hand operand which is responsible for invoking the

member function should be an object of the same class. However, friend function allows both

approaches. How?

It may be recalled that an object need not be used to invoke a friend function but can

be passed as an argument. Thus, we can use a friend function with a built-in type data as the

left-hand operand and an object as the right-hand operand. Program 5.11 illustrates this, using

scalar multiplication of a vector. It also shows how to overload the input and output operators

>> and <<.

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

131

Program 5.11 Overloading Operators using Friends

 #include <iostream.h>

 const size = 3;

 class vector

 {

int v[size];

public:

vector (); // constructs null vector

vector (int *x); // constructs vector from array

friend vector operator *(int a, vector b); // friend 1

friend vector operator *(vector b, int a); // friend 2

friend istream & operator >> (istream &, vector &);

friend ostream & operator << (ostream &, vector &);

};

vector : : vector ()

{

for (int i = 0; i < size; i++)

v [i] = 0;

}

vector : : vector (int *x)

{

for (int i = 0; i < size ; i++)

v [i] = x[i];

}

vector operator *(int a, vector b)

{

 vector c;

 for (int i = 0; i < size; i++)

 c.v[i] = a * b.v[i];

 return c;

}

vector operator *(vector b, int a)

{

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

132

 vector c;

 for (int i = 0; i<size; i++)

 c.v [i] = b.v[i] * a;

 return c;

}

istream & operator >> (istream &din, vector &b)

{

 for int i = 0; i < size; i++

 din >> b.v [i];

 return (din);

}

ostream & operator << (ostream &dout, vector &b)

{

 dout << “ (“ << b.v [0];

 for (int i = 1; i < size; i++)

 dout << “, “<< b.v [i]

 dout << “) “;

 return (dout);

}

int x[size] = {2,4,6};

{

 vector m; // invokes constructor 1

 vector n = x; // invokes constructor 2

 cout << “Enter elements of vector m “ << “\n”;

 cin >> m ; // invokes operator>> () function

 cout << “\n”;

 cout << “m = “ << nm << “\n”; // invokes operator << ()

 vector p, q;

 p = 2 * m; // invokes friend 1

 q = n * 2 // invokes friend 2

 cout << “\n”;

 cout << “p = “ << p << “\n”; // invokes operator << ()

 cout << “q = “ << q << “\n”;

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

133

 return 0;

}

The output of Program 5.11 would be:

 Enter elements of vector m

 5 10 15

 m = (5, 10, 15)

 p = (10, 20, 30)

 q = (4, 8, 12)

 The program overloads the operator * two times, thus overloading the operator function

operator*() itself. In both the cases, the functions are explicitly passed two arguments and

they are invoked like any other overloaded function, based on the types of its arguments. This

enables us to use both the forms of scalar multiplication such as

 p = 2 * m; // equivalent to p = operator* (2, m);

 q = n * 2; // equivalent to q = operator* (n,2);

The program and its output are largely self-explanatory. The first constructor

 vector ();

constructs a vectors whose elements are all zero. Thus

 vector m;

creates a vector m and initializes all its elements to 0. The second constructor

 vector (int &x);

creates a vector and copies the elements pointed to by the pointer argument x into it.

Therefore, the statements

 int x[3] = {2, 4, 6};

 vector n = x;

creates n as a vector with components 2, 4 and 6.

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

134

 NOTE : We have used vector variables like m and n in input and output statements just like

simple variables. This has been made possible by overloading the operators >> and << using

the functions:

 friend istream & operator >> (istream &, vector &);

 friend ostream & operator << (ostream &, vector &);

 istream and ostream are classes defined in the iostream.h file which has been included in

the program.

5.17 MANIPULATION OF STRINGS USING OPERATORS

ANSI C implements string using character arrays, pointers and string functions. there

are no operators for manipulating the strings. One of the main drawbacks of string

manipulations in C is that whenever a string is to be copied, the programmer must first

determine its length and allocate the required amount of memory.

 Although these limitations exist in C++ as well, it permits us to create our own definitions

of operators that can be used to manipulate the strings very much similar to the decimal

numbers. Recently, ANSI C++ committee has added a new class called string to the C++

class library that supports all kinds of string manipulations.

 For example, we shall be able to use statements like

 string3 = string1 + string2

 if (string1 >= string2) string = string1;

 Strings can be defined as class objects which can be then manipulated like the built-in

types. Since the strings vary greatly in size, we use new to allocate memory for each string

and a pointer variable to point to the string array. Thus we must create string objects that can

hold these two pieces of information, namely, length and location which are necessary for

string manipulations. A typical string class will look as follows:

 class string

 {

 char *p; // pointer to string

int len; // length of string

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

135

public:

. // member functions

. // to initialize and

. // manipulate strings

 };

 We shall consider an example to illustrate the application of overloaded operators to

strings. The example shown in Program 5.12 overloads two operators, + and <= just to show

how they are implemented. This can be extended to cover other operators as well.

Program 5.12 Mathematical Operations on Strings

include <string.h>

include <iostream.h>

class string

{

char *p;

int len;

public:

string () {len = 0; p = 0;} // create null string

string (const char *s); // create strings from arrays

string (const string & s); // copy constructor

~ string () {delete p;} // destructor

// + operator

friend string operator + (const string & s, const string &t);

// <= operator

friend int operator <= (const string &s, const string &t);

friend void show (const string s);

};

string : : string (const char *s)

{

len = strlen (s);

p = new char [len+1];

strcpy (p, s);

}

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

136

string : : string (const string &s)

{

len = s.len;

p = new char [len + 1];

strcpy (p,s.p);

}

// overloading + operator

string operator + (const string &s, const string &t)

{

string temp;

temp.len = s.len + t.len;

temp.p = new char [temp.len + 1];

strcpy (temp.p, s.p);

strcat (temp.p, t.p);

return (temp);

}

// overloading <= operator

int operator <= (const string &s, const string &t)

{

int m = strlen (s.p);

int n = strlen (t.p);

if (m <= n) return (1);

else return (0);

}

void show (const string s)

{

cout << s.p;

}

int main ()

{

string s1 = “New “;

string s2 = “York “;

string s3 = “Delhi “;

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

137

string string1, string2, string3;

string1 = s1;

string2 = s2;

string3 = s1 + s3;

cout << “\nstring1 = “; show (string1);

cout << “\nstring2 = “; show (string2);

cout << “\n”;

cout << “\nstring3 = “; show (string3);

cout << “\n\n”;

if (string1 <= string3)

{

show (string1);

cout << “ smaller than “;

show (string3);

cout << “\n”;

}

else

{

show (string3);

cout << “ smaller than “;

show (string1);

cout << “\n”;

}

return 0;

}

The output of program 5.12 would be:

 string1 = New

 string2 = York

 string3 = New Delhi

 New smaller than New Delhi

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

138

5.18 SOME OTHER OPERATOR OVERLOADING EXAMPLES

Overloading the Subscript Operator []

The subscript operator is normally used to access and modify a specific element in an array.

Program 5.13 demonstrates the overloading of the subscript operator to customize its

behaviour.

Program 5.13 Overloading of the Subscript Operator

 # include <iostream>

 # include<conio.h>

 using namespace std;

 class arr

 {

 int a [5];

 public:

 arr (int *s)

 {

 int i;

 for (i = 0; i < 5; i++)

 a [i] = s [i];

 }

 int operator [] (int k) // Overloading the subscript operator

 {

 return (a [k]);

 }

 };

 int main()

 {

 int x [5] = {1, 2, 3, 4, 5};

 arr A(x);

 int i;

 for (i = 0; i <5; i++)

 {

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

139

 cout << x[i] << “\t”; // Using subscript operator to access the

 private array elements

 }

 getch ();

 return 0;

 }

The output of Program 5.13 would be:

 1 2 3 4 5

 As can be seen in the above program, we have used the subscript operator along with the

object name to access the private array elements of the object.

Overloading the Pointer-to-member (->) Operator

The pointer-to-member operator (->) is normally used in conjunction with an object pointer

to access any of the object’s members. Program 5.14 demonstrates the overloading of the ->

operator.

Program 5.14 Overloading of Pointer-to-member Operator

 #include<iostream>

 #include<conio.h>

 using namespace std;

 class test

 {

 public:

 int num;

 test (int j)

 {

 num = j;

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

140

 }

 test * operator -> (void)

 {

 return this;

 }

 };

 int main ()

 {

 test T(5);

 test *Ptr = &T;

 cout << “T.num = “<< T.num; // Accessing num

 normally

 cout << “\nPtr->num = “<<Ptr->num; // Accessing num using

 normal object pointer

 cout << “\nT->num = “<<T->num; // Accessing num using

 overloaded -> operator

 getch ();

 return 0;

 }

The output of Program 5.14 would be:

T.num = 5

 Ptr->num = 5

T->num = 5

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

141

 The above program demonstrates both the normal (Ptr->num) as well as the overloaded

(T->num) behaviour of the -> operator.

 The statement,

 return this;

returns a pointer to itself; that is a pointer to the test class object.

5.19 RULES FOR OVERLOADING OPERATORS

Although it looks simple to redefine the operators, there are certain restrictions and

limitations in overloading them. Some of them are listed below:

1. Only existing operators can be overloaded. New operators cannot be created.

2. The overloaded operator must have at least one operand that is of user-defined type.

3. Overloaded operators follow the syntax rules of the original operators. They cannot

be overridden.

4. There are some operators that cannot be overloaded. (See table 7.1)

5. We cannot use friend functions to overload certain operators.(See table 7.2).

However, member functions can be used to overload them.

6. Unary operators, overloaded by means of a member function, take no explicit

arguments and return no explicit values, but, those overloaded by means of a friend function,

take one reference argument (the object of the relevant class).

7. Binary operators overloaded through a member function take one explicit argument

and those which are overloaded through a friend function take two explicit arguments.

8. When using binary operators overloaded through a member function, the left hand

operand must be an object of the relevant class.

9. Binary arithmetic operators such as +, -, * and / must explicitly return a value. They

must not attempt to change their own arguments.

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

142

 Table Operators that cannot be overloaded

 Size of Size of operator

 . Membership operator

 .* pointer-to-member operator

 : : Scope resolution operator

 ?: Conditional operator

 Table Where a friend cannot be used

 = Assignment operator

 () Function call operator

 [] Subscripting operator

 -> Class member access operator

5.20 TYPE CONVERSIONS

We know that when constants and variables of different types are mixed in an

expression, C applies automatic type conversion to the operands as per certain rules.

Similarly, an assignment operation also causes the automatic type conversion. That type of

data to the right of an assignment operator is automatically converted to the type of the

variable on the left. For example, the statements.

 int m;

 float x = 3.14159;

 m = x;

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

143

convert x to an integer before its value is assigned to M. Thus, the fractional part is truncated.

The type conversions are automatic as long as the data types involved are built-in types.

What happens when they are user-defined data types?

Consider the following statement that adds two objects and then assigns the result to a third

object.

v3 = v1 + v2; // v1, v2 and v3 are class type objects

When the objects are of the same class type, the operations of addition and assignment are

carried out smoothly and the compiler does not make any complaints. We have seen, in the

case of class objects, that the values of all the data members of the right-hand object are

simply copied into the corresponding members of the object on the left-hand. What if one of

the operands is an object and the other is a built-in type variable? Or, what if they belong to

two different classes?

 Since the user-defined data types are designed by us to suit our requirements, the

compiler does not support automatic type conversions for such data types. We must, therefore

design the conversion routines by ourselves, if, such operations are required.

Three types of situations might arise in the data conversion between uncompatible types:

1. Conversion from basic type to class type.

2. Conversion from class type to basic type.

3. Conversion from one class type to another class type.

We shall discuss all the three cases in detail.

Basic to Class Type:

The conversion from basic type to class type is easy to accomplish. It may be recalled that the

use of constructors was illustrated in a number of examples to initialize objects. For example,

a constructor was used to build a vector object from an int type array. Similarly, we used

another constructor to build a string type object from a char* type variable. These are all

examples where constructors perform a defacto type conversion from the argument’s type to

the constructor’s class type.

Consider the following constructor:

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

144

 string : : string (char *a)

 {

 length = strlen (a);

 P = new char [length + 1];

 strcpy (P, a);

 }

This constructor builds a string type object from a char* type variable a. The variable

length and p are data members of the class string. Once this constructor has been defined in

the string class, it can be used for conversion from char* type to string type. Example:

 string s1, s2;

 char* name1 = “IBM PC”;

 char* name2 = “Apple Computers”;

 s1 = string (name1);

 s2 = name2;

The statement

 s1 = string (name1);

first converts name1 from char* type two string type and then assigns the string type values

to the object s1. The statement

s2 = name2;

and does the same job by invoking the constructor implicitly.

Let us consider another example of converting an int type to a class type.

 class time

 {

 int hrs;

 int mins;

 public:

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

145

 time (int t) // constructor

 {

 hrs = t/60; // t in minutes

 mins = t % 60

 }

 };

The following conversion statements can be used in a function:

 time T1; // object T1 created

 int duration = 85

 T1 = duration; // int to class type

After this conversion, the hrs member of T1 will contain a value of 1 and mins member a

value of 25, denoting 1 hours and 25 minutes.

NOTE: The constructs used for the type conversion take a single argument whose type is to

be converted.

In both the examples, the left-hand operand of = operator is always a class object.

Therefore, we can also accomplish this conversion using an overloaded = operator.

Class to Basic Type:

The constructors did a define job in type conversion from a basic to class type. What about

the conversion from a class to basic type? The constructor functions do not support this

operation. Luckily, C++ allows us to define an overloaded casting operator that could be used

to convert a class data to a basic type. The general form of an overloaded casting operator

function, usually referred to us. A conversion function, is:

 operator typename ()

 {

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

146

 (Function statements)

 }

 This function converts a class type data to typename. For example, the operator double()

converts a class object to type double, the operator int () converts a class type object to type

int, and so on.

Consider the following conversion function:

 vector : : operator double ()

 {

 double sum = 0;

 for (int i = 0; i < size; i++)

 sum = sum + v[i] * v[i];

 return sqrt (sum);

 }

 This function converts a vector to the corresponding scalar magnitude. recall that the

magnitude of a vector is given by the square root of the sum of thee squares of its

components. The operator double() can be used as follows:

 double length = double (V1);

 or

 double length = V1;

where V1 is an object of type vector. Both the statements have exactly the same same effect.

When the compiler encounters a statement that requires the conversion of a class type to a

basic type, it quietly calls the casting operator function to do the job.

 The casting operator function should satisfy the following conditions:

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

147

 * It must be a class member.

 * It must not specify a return type.

 * It must not have any arguments.

 Since it is a member function, it is invoked by the object and, therefore, the values used

for conversion inside the function belong to the object that invoked the function. This means

that the function does not need an argument.

 In the string example described in the previous section, we can do the conversion from

string to char* as follows:

 string : : operator char* ()

 {

 return (p);

 }

One class to Another Class Type

We have just seen data conversion techniques from a basic to class type and a class to

basic type. But there are situations where we would like to convert one class type data to

another class type.

Example:

 objX = objY; // objects of different types

objX is an object of class X and objY is an object of class Y. The class Y type data is

converted to the class X type data and the converted value is assigned to the objX. Since the

conversion takes place from class Y to class X, Y is known as the source class and X is

known as the destination class.

 Such conversions between objects of different classes can be carried out by either a

constructor or a conversion function. The compiler treats them the same way. Then, how do

we decide which form to use? It depends upon where we want the type-conversion function

to be located in the source class or in the destination class.

 We know that the casting operator function

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

148

 operator typename ()

 converts the object of which it is a member to typename. The typename may be a built-in

type or a user-defined one (another class type). In the case of conversions between objects,

typename refers to the destination class. Therefore, when a class needs to be converted, a

casting operator function can be used (i.e., source class). The conversion takes place in the

source class and the result is given to the destination class object.

 Now consider a single-argument constructor function which serves as an instruction for

converting the argument’s type to the class type of which it is a member. This implies that the

argument belongs to the source class and is passed to the destination class for conversion.

This makes it necessary that the conversion constructor be placed in the destination class. The

following figure illustrates these two approaches.

The following table provides a summary of all the three conversions. It shows that the

conversion from a class to any other type (or any other class) should make use of of a casting

operator in the source class. On the other hand, to perform the conversion from any other

type/class to a class type, a constructor should be used in the destination class.

Table : type conversions

Conversion required Conversion takes

Source class

place in

Destination class

Basic → class Not applicable Constructor

Class → basic Casting operator Not applicable

Class → class Casting operator Constructor

When a conversion using a constructor is performed in the destination class, we must

be able to access the data members of the object sent (by the source class) as an argument.

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

149

Since data members of the source class are private, we must use special access functions in

the source class to facilitate its data flow to the destination class.

A DATA CONVERSION EXAMPLE:

 Let us consider an example of an inventory of products in store. One way of recording

the details of the products is to record their code number, total items in the stock and the cost

of each item. Another approach is to just specify the item code and the value of the item in

the stock. The example shown in Program 5.15 uses two classes and shows how to convert

data of one type to another.

Program 5.15 Data Conversions

include <iostream>

using namespace std;

class invent2; // destination class declared

class invent1; // source class

{

int code; // item code

int items; // no. of items

float price; // cost of each item

public:

invent1 (int a, int b, float c)

{

code = a;

items = b;

price = c;

}

void putdata ()

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

150

{

cout << “Code: “ << code << “\n”;

cout << “Items: “ << items << “\n”;

cout << “Value: “ << price << “\n”;

}

int getcode () {return code; }

int getitems () {return items; }

float getprice () {return price; }

operator float () { return (items *price); }

/ * operator invent2 () // invent1 to invent2

{

invent2 temp;

temp.code = code;

temp.value = price * items;

return temp;

} * /

}; // End of source class

class invent2 // destination class

{

int code;

float value;

public:

invent2 ()

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

151

{

code = 0; value = 0;

}

invent2 (int x, float y) // construction for initialization

{

code = x;

value = y;

}

void putdata ()

{

cout << “Code: “ << code << “\n” ;

cout << “Value “ << value << “\n”;

}

invent2 (invent 1 p) // construction for conversion

{

code = p.getcode ();

value = p.getitems () * p.getprice ();

}

}; // End of destination class

int main ()

{

invent1 s1 (100, 5, 140.0);

invent2 d1;

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

152

float total_value;

/* invent1 To float */

total_value = s1;

/* invent1 To invent2 */

d1 = s1;

cout << “Product details - invent1 type” << “\n”;

s1. putdata ();

cout << “Value = “ << total_value << “\n\n”;

cout << “Product details - invent2 type “ << “\n”;

d1.putdata ();

return 0;

}

The output of Program 5.15 would be:

Product details - invent1 type

Code : 100

Items : 5

Value : 140

Stock value

Value = 700

Product details-invent2 type

Code : 100

Value : 700

Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli

153

NOTE : We have used the conversion function

 operator float ()

in the class invent1 to convert the invent1 type data to a float. The constructor

 invent2 (invent1)

is used in the class invent2 to convert the invent1 type data to the invent2 type data.

Remember that we can also use the casting operator function

 operator invent2 ()

in the class invent1 to convert invent1 type to invent2 type. However, it is important that we

do not use both the constructor and the casting operator for the same type conversion, since

this introduces an ambiguity as to how the conversion should be performed.

Study Learning Material Prepared by

Dr. S.N. LEENA NELSON M.Sc., M.Phil., Ph.D.

Associate Professor & Head, Department of Mathematics,

Women’s Christian College, Nagercoil – 629 001,

Kanyakumari District, Tamilnadu, India.

